Synthesis 2021; 53(01): 123-134
DOI: 10.1055/s-0040-1707232
feature
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Iodoperfluoroalkylation: Photocatalysis versus Frustrated Lewis Pair Catalysis

Lucas Helmecke
,
Michael Spittler
,
,
Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany   Email: constantin.czekelius@hhu.de
› Author Affiliations
This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (Grant No. 396890929/GRK 2482). The generous support provided to M. Spittler through a fellowship provided by the Studienstiftung des deutschen Volkes (Doktorandenstipendium) is most gratefully acknowledged.
Further Information

Publication History

Received: 11 May 2020

Accepted after revision: 30 June 2020

Publication Date:
12 August 2020 (online)


In memoriam Professor Rolf Huisgen

Abstract

A comparison of two catalytic, metal-free iodoperfluoro­alkylation protocols is presented. Frustrated Lewis pairs [ t Bu3P/B(C6F5)3] or phosphines/phosphites under visible light irradiation efficiently mediate the functionalization of non-activated alkenes and alkynes. A comprehensive account of the corresponding substrate scopes as well as insights into the mechanistic details of both reaction pathways are provided.

Supporting Information

 
  • References

    • 1a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1b Hunter L. Beilstein J. Org. Chem. 2010; 6: 38
    • 3a Bégué J.-P, Bonnet-Delpon D. J. Fluorine Chem. 2006; 127: 992
    • 3b Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester: 2009
    • 3c Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 3d Zhu W, Wang J, Wang S, Gu Z, Aceña JL, Izawa K, Liu H, Soloshonok VA. J. Fluorine Chem. 2014; 167: 37
    • 3e Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 4a Babudri F, Farinola GM, Naso F, Ragni R. Chem. Commun. 2007; 1003
    • 4b Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 4c Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
    • 5a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 5b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 5c Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed. Wiley-VCH; Weinheim: 2013
  • 7 Shibata N, Matsnev A, Cahard D. Beilstein J. Org. Chem. 2010; 6: 65
  • 8 Barata-Vallejo S, Postigo A. Coord. Chem. Rev. 2013; 257: 3051
    • 9a Barata-Vallejo S, Bonesi SM, Postigo A. Org. Biomol. Chem. 2015; 13: 11153
    • 9b Dagousset G, Carboni A, Masson G, Magnier E. Visible Light-Induced (Per)fluoroalkylation by Photoredox Catalysis. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds, 1st ed., Progress in Fluorine Science Series, Vol. 3. Groult H, Leroux FR, Tressaud A. Elsevier; Amsterdam: 2017. Chap. 14, 389-426
    • 10a Habib MH, Mallouk TE. J. Fluorine Chem. 1991; 53: 53
    • 10b Beniazza R, Remisse L, Jardel D, Lastécouères D, Vincent J.-M. Chem. Commun. 2018; 54: 7451
    • 10c Davies T, Haszeldine RN, Tipping AE. J. Chem. Soc., Perkin Trans. 1 1980; 927
    • 10d Tsuchii K, Imura M, Kamada N, Hirao T, Ogawa A. J. Org. Chem. 2004; 69: 6658
    • 11a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 11b Chatterjee T, Iqbal N, You Y, Cho EJ. Acc. Chem. Res. 2016; 49: 2284
  • 12 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 13 Barata-Vallejo S, Cooke MV, Postigo A. ACS Catal. 2018; 8: 7287
  • 14 Behrends I, Bähr S, Czekelius C. Chem. Eur. J. 2016; 22: 17177
  • 15 Spittler M, Helmecke L, Czekelius C. Eur. J. Org. Chem. 2019; 458
  • 16 Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
  • 17 Wang Y, Wang J, Li G.-X, He G, Chen G. Org. Lett. 2017; 19: 1442
    • 18a Huang W.-Y, Zhang H.-Z. J. Fluorine Chem. 1990; 50: 133
    • 18b Lumbierres M, Moreno-Mañas M, Vallribera A. Tetrahedron 2002; 58: 4061
    • 19a Postigo A. Eur. J. Org. Chem. 2018; 6391
    • 19b Lima CG. S, de M Lima T, Duarte M, Jurberg ID, Paixão MW. ACS Catal. 2016; 6: 1389
    • 19c Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
    • 19d Yuan Y.-q, Majumder S, Yang M.-h, Guo S.-r. Tetrahedron Lett. 2020; 61: 151506
  • 20 Helmecke L, Spittler M, Baumgarten K, Czekelius C. Org. Lett. 2019; 21: 7823
  • 21 Zhao L, Huang Y, Wang Z, Zhu E, Mao T, Jia J, Gu J, Li X.-F, He C.-Y. Org. Lett. 2019; 21: 6705
  • 22 Lu H, Wang D.-y, Zhang A. J. Org. Chem. 2020; 85: 942
  • 23 Trifonov AL, Panferova LI, Levin VV, Kokorekin VA, Dilman AD. Org. Lett. 2020; 22: 2409
  • 24 Zhu E, Liu X.-X, Wang A.-J, Mao T, Zhao L, Zhang X, He C.-Y. Chem. Commun. 2019; 55: 12259
    • 25a Rosso C, Williams JD, Filippini G, Prato M, Kappe CO. Org. Lett. 2019; 21: 5341
    • 25b Sun X, He Y, Yu S. J. Photochem. Photobiol. A 2018; 355: 326
    • 25c Tang X, Studer A. Angew. Chem. Int. Ed. 2018; 57: 814
  • 26 Mao T, Ma M.-J, Zhao L, Xue D.-P, Yu Y, Gu J, He C.-Y. Chem. Commun. 2020; 56: 1815
  • 27 Dureen MA, Stephan DW. J. Am. Chem. Soc. 2009; 131: 8396
  • 28 Fu M.-C, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
    • 29a Bracker M, Helmecke L, Kleinschmidt M, Czekelius C, Marian CM. Molecules 2020; 25: 1606
    • 29b Shaw RA, Hill JG, Legon AC. J. Phys. Chem. A 2016; 120: 8461
  • 30 Sarwar MG, Dragisic B, Salsberg LJ, Gouliaras C, Taylor MS. J. Am. Chem. Soc. 2010; 132: 1646
    • 31a Konno T, Chae J, Kanda M, Nagai G, Tamura K, Ishihara T, Yamanaka H. Tetrahedron 2003; 59: 7571
    • 31b Xiao Z, Hu H, Ma J, Chen Q, Guo Y. Chin. J. Chem. 2013; 31: 939
  • 32 Xu T, Cheung CW, Hu X. Angew. Chem. Int. Ed. 2014; 53: 4910
  • 33 Israr M, Xiong H, Li Y, Bao H. Org. Lett. 2019; 21: 7078
  • 34 Rawner T, Lutsker E, Kaiser CA, Reiser O. ACS Catal. 2018; 8: 3950
  • 35 Ma J.-J, Yi W.-B. Org. Biomol. Chem. 2017; 15: 4295