Synlett 2021; 32(01): 14-22
DOI: 10.1055/s-0040-1707202
account
© Georg Thieme Verlag Stuttgart · New York

New Dimensions of Brønsted Base Catalyzed Carbon–Carbon Bond-Forming Reactions

Yasuhiro Yamashita
,
This work was partially supported by the Japan Science and Technology Agency (JST, Advanced Catalytic Transformation Program for Carbon Utilization, ACT-C), Japan Agency for Medical Research and Development (AMED) (S.K.), and the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant No. JP 25105713, 16H01006, and 17H06448) (Y.Y.).
Further Information

Publication History

Received: 08 May 2020

Accepted after revision: 12 June 2020

Publication Date:
11 August 2020 (online)


Abstract

Catalytic carbon–carbon bond-forming reactions of weakly acidic carbon pronucleophiles (pK a in DMSO ≥30) were developed using strong alkaline metal Brønsted bases as catalysts. Not only weakly acidic amides, esters, nitriles, sulfonamides without any activating group, and alkyl azaarenes, but also alkyl arenes such as toluene, were applicable for the reactions, which are difficult to be applied in typical Brønsted base catalyzed reactions. Expansion to enantioselective reactions was also revealed to be possible. The reactions are atom economical and require only inexpensive alkaline metals rather than precious transition metals.

1 Introduction

2 Catalytic Direct-Type Addition Reactions of Weakly Acidic Carbonyl and Related Pronucleophiles

3 Catalytic Direct-Type Addition Reactions of Alkyl Azaarenes

4 Catalytic Direct-Type Addition Reactions of Alkyl Arenes

5 Conclusion

 
  • References

  • 1 House HO. In Modern Synthetic Reactions, 2nd ed. Benjamin-Cummings Publishing; New York: 1972. Chap. 9

    • For reviews, see:
    • 4a Shibasaki M, Yoshikawa N. Chem. Rev. 2002; 102: 2187
    • 4b Palomo C, Oiarbide M, Lopez R. Chem. Soc. Rev. 2009; 38: 632
    • 4c Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2011; 50: 4760

    • For leading examples of this research area, see:
    • 4d Sasai H, Suzuki T, Arai S, Arai T, Shibasaki M. J. Am. Chem. Soc. 1992; 114: 4418
    • 4e Yamada YM. A, Yoshikawa N, Sasai H, Shibasaki M. Angew. Chem., Int. Ed. Engl. 1997; 36: 1871
    • 4f Yoshikawa N, Yamada YM. A, Das J, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1999; 121: 4168
    • 4g Trost BM, Ito H. J. Am. Chem. Soc. 2000; 122: 12003
  • 5 Bordwell FG. Acc. Chem. Res. 1988; 21: 456

    • For examples, see:
    • 6a Pines H. Acc. Chem. Res. 1974; 7: 155
    • 6b Dehnel A, Kanabus-Kaminska JM, Lavielle G. Can. J. Chem. 1988; 66: 310
    • 6c Harada T, Muramatsu K, Fujiwara T, Kataoka H, Oku A. Org. Lett. 2005; 7: 779
    • 6d Poisson T, Gembus V, Oudeyer S, Marsais F, Levacher V. J. Org. Chem. 2009; 74: 3516

    • Other related examples using a strong base as a catalyst apart from C–C bond formation: hydroamination:
    • 6e Schlott RJ, Falk JC, Narducy KW. J. Org. Chem. 1972; 37: 4243
    • 6f Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795

    • Si–O bond formation:
    • 6g Kato M, Mori A, Oshino H, Enda J, Kobayashi K, Kuwajima I. J. Am. Chem. Soc. 1984; 106: 1773
    • 6h Koreeda M, Koo S. Tetrahedron Lett. 1990; 31: 831
    • 7a Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 7b Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 7c Liu J, Wang L. Synthesis 2017; 49: 960

      Catalytic activation of unactivated amides and esters using strong Lewis acid/Brønsted base systems, see:
    • 8a Kobayashi S, Kiyohara H, Yamaguchi M. J. Am. Chem. Soc. 2011; 133: 708
    • 8b Chan JZ, Yao W, Hastings BT, Lok CK, Wasa M. Angew. Chem. Int. Ed. 2016; 55: 13877
    • 8c Shang M, Cao M, Wang Q, Wasa M. Angew. Chem. Int. Ed. 2017; 56: 13338
    • 8d Shang M, Wang X, Koo SM, Youn J, Chan JZ, Yao W, Hastings BT, Wasa M. J. Am. Chem. Soc. 2017; 139: 95

      Catalytic activation of amides bearing a 7-azaindoline auxiliary, see:
    • 9a Majumdar N, Saito A, Yin L, Kumagai N, Shibasaki M. Org. Lett. 2015; 17: 3362
    • 9b Kumagai N, Shibasaki M. Synthesis 2019; 51: 185

      Reviews of catalytic asymmetric direct Mannich-type reactions:
    • 10a Kobayashi S, Ueno M. In Comprehensive Asymmetric Catalysis, Suppl. 1. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 2003. Chap. 29.5, 143
    • 10b Marques MM. B. Angew. Chem. Int. Ed. 2006; 45: 348
    • 10c Ting A, Schaus SE. Eur. J. Org. Chem. 2007; 5797
    • 10d Friestad GK, Mathies AK. Tetrahedron 2007; 63: 2541
    • 10e Verkade JM. M, van Hemert LJ. C, Quaedflieg PJ. L. M, Rutjes FP. J. T. Chem. Soc. Rev. 2008; 37: 29
    • 10f Gómez Arrayás R, Carretero JC. Chem. Soc. Rev. 2009; 38: 1940
    • 10g Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
  • 11 Yamashita Y, Suzuki H, Kobayashi S. Org. Biomol. Chem. 2012; 10: 5750
    • 12a Yamashita Y, Kobayashi S. Chem. Eur. J. 2018; 24: 10
    • 12b Bao W, Kossen H, Schneider U. J. Am. Chem. Soc. 2017; 139: 4362

      Reviews including examples of catalytic asymmetric direct-type 1,4-addition reactions, see:
    • 13a Sibi MP. Tetrahedron 2000; 56: 8033
    • 13b Krause N, Hoffmann-Röder A. Synthesis 2001; 171
    • 13c Alexakis A, Benhaim C. Eur. J. Org. Chem. 2002; 3221
    • 13d Cristoffers J, Baro A. Angew. Chem. Int. Ed. 2003; 42: 1688
    • 13e Cristoffers J, Koripelly G, Rosiak A, Rössle M. Synthesis 2007; 1279
    • 13f Almasi D, Alonso DA, Nájera C. Tetrahedron: Asymmetry 2007; 18: 299
    • 13g Sulzer-Mossé S, Alexakis A. Chem. Commun. 2007; 3123
    • 13h Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
    • 13i Vicario JL, Badia D, Carrillo L. Synthesis 2007; 2065
  • 14 Suzuki H, Sato I, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2015; 137: 4336
  • 15 Sato I, Suzuki H, Yamashita Y, Kobayashi S. Org. Chem. Front. 2016; 3: 1241

    • Catalytic enantioselective reactions using alkylnitriles, see:
    • 16a Suto Y, Kumagai N, Matsunaga S, Shibasaki M. Org. Lett. 2003; 5: 3147
    • 16b Suto Y, Tsuji R, Kanai M, Shibasaki M. Org. Lett. 2005; 7: 3757
    • 16c Sureshkumar D, Ganesh V, Kumagai N, Shibasaki M. Chem. Eur. J. 2014; 20: 15723
    • 16d Deng T, Wang H, Cai C. Eur. J. Org. Chem. 2014; 32: 7259
    • 16e Lin S, Kumagai N, Shibasaki M. Org. Biomol. Chem. 2016; 14: 9725
    • 16f Saito A, Kumagai N, Shibasaki M. Org. Lett. 2019; 21: 8187
  • 17 Yamashita Y, Sato I, Suzuki H, Kobayashi S. Chem. Asian J. 2015; 10: 2143
  • 18 Yamashita Y, Igarashi R, Suzuki H, Kobayashi S. Synlett 2017; 28: 1287
  • 19 Yamashita Y, Igarashi R, Suzuki H, Kobayashi S. Org. Biomol. Chem. 2018; 16: 5969

    • Pines and co-workers reported KOt-Bu-catalyzed addition reactions of alkyl azaarenes with alkenes; however, double addition reactions sometimes occurred, see:
    • 20a Pines H, Stalick WM, Holford TG, Golab J, Lazar H, Simonik J. J. Org. Chem. 1971; 36: 2299; also see ref. 6a

    • Recently, B.-T. Guan and co-workers reported KHMDS-catalyzed addition reactions of alkylpyridines with styrenes, see:
    • 20b Zhai D.-D, Zhang X.-Y, Liu Y.-F, Zheng L, Guan B.-T. Angew. Chem. Int. Ed. 2018; 57: 1650

    • For their related work, see:
    • 20c Liu Y.-F, Zhai D.-D, Zhang X.-Y, Guan B.-T. Angew. Chem. Int. Ed. 2018; 57: 8245
    • 20d Zhang X.-Y, Zheng L, Guan B.-T. Org. Lett. 2018; 20: 7177
    • 20e Liu Y.-F, Zheng L, Zhai D.-D, Zhang X.-Y, Guan B.-T. Org. Lett. 2019; 21: 5351
  • 21 Suzuki H, Igarashi R, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2017; 56: 4520
  • 22 Yamashita Y, Minami K, Kobayashi S. Chem. Lett. 2018; 47: 690
    • 23a Wang Z, Zheng Z, Xu X, Mao J, Walsh PJ. Nat. Commun. 2018; 9: 3365
    • 23b Sha S.-C, Tcyrulnikov S, Li M, Hu B, Kozlowski MC, Walsh PJ. J. Am. Chem. Soc. 2018; 140: 12415
  • 24 Schlosser M. Pure Appl. Chem. 1988; 11: 1627
    • 25a Fleming P, O’Shea DF. J. Am. Chem. Soc. 2011; 133: 1698
    • 25b Blangetti M, Fleming P, O’Shea DF. J. Org. Chem. 2012; 77: 2870
    • 25c Manvar A, Fleming P, O’Shea DF. J. Org. Chem. 2015; 80: 8727
  • 26 Yamashita Y, Suzuki H, Sato I, Hirata T, Kobayashi S. Angew. Chem. Int. Ed. 2018; 57: 6896
  • 27 Pioneering works on catalytic addition reactions of alkyl arenes with alkenes using alkaline metal bases were reported by H. Pines and co-workers, see: Pines H. Synthesis 1974; 309 ; see also ref. 6a
  • 28 Sato I, Yamashita Y, Kobayashi S. Synthesis 2019; 51: 240