Synthesis 2020; 52(20): 2962-2969
DOI: 10.1055/s-0040-1707194
feature
© Georg Thieme Verlag Stuttgart · New York

Selective Chemical Modification of DNA with Boronic Acids by On-Column CuAAc Reactions

Mégane Debiais
a  Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France   Email: michael.smietana@umontpellier.fr
,
Jean-Jacques Vasseur
a  Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France   Email: michael.smietana@umontpellier.fr
,
Sabine Müller
b  University Greifswald, Institute for Biochemistry, Greifswald, Germany
,
Michael Smietana
a  Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France   Email: michael.smietana@umontpellier.fr
› Author Affiliations
The Agence Nationale de la Recherche and the Deutsche Forschungsgemeinschaft are gratefully acknowledged for financial support (ANR PCRI ‘TEMPLAR’-16-CE92- 0010-01; DFG MU1396/11).
Further Information

Publication History

Received: 14 May 2020

Accepted after revision: 15 June 2020

Publication Date:
14 July 2020 (online)


Abstract

The use of the Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction for the preparation of oligonucleotide conjugates is by now familiar. However, the selective introduction of boronic acids into DNA and RNA sequences by CuAAC reactions has long been considered impossible due to the incompatibility of the boronic acid moiety with copper salts. Here we describe two new methods for the selective on-column functionalization of oligonucleotides with boronic acids via two different CuAAC reactions. The first one allows the introduction of a phenylboronic acid at the 5′-extremity of oligonucleotides, while the selective intrastrand positioning of the modification can be achieved with the second one. Both methods were applied to the DNA and RNA series (up to a 20-mer) with good isolated yields and excellent purities. These results illustrate the potential of the reported methods for selective incorporation of boronic acids into oligonucleotides.

Supporting Information

 
  • References

    • 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1b Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
    • 2a Trippier PC, McGuigan C. MedChemComm 2010; 1: 183
    • 2b António JP. M, Russo R, Carvalho CP, Cal PM. S. D, Gois PM. P. Chem. Soc. Rev. 2019; 48: 3513
    • 2c Brooks WL. A, Sumerlin BS. Chem. Rev. 2016; 116: 1375
  • 3 Paranjeet K, Gopal LK, Surendra Kumar N. Curr. Org. Synth. 2017; 14: 665
  • 4 Hall DG. Chem. Soc. Rev. 2019; 48: 3475
  • 5 Fujita N, Shinkai S, James TD. Chem. Asian J. 2008; 3: 1076
  • 6 Hall DG. In Boronic Acids 2011; pp. 1
    • 7a Stubelius A, Lee S, Almutairi A. Acc. Chem. Res. 2019; 52: 3108
    • 7b Marco-Dufort B, Tibbitt MW. Mater. Today 2019; 12: 16
    • 7c Zhai W, Sun X, James TD, Fossey JS. Chem. Asian J. 2015; 10: 1836
    • 7d Bull SD, Davidson MG, Van den Elsen JM. H, Fossey JS, Jenkins AT. A, Jiang YB, Kubo Y, Marken F, Sakurai K, Zhao J, James TD. Acc. Chem. Res. 2013; 46: 312
  • 8 Akgun B, Hall DG. Angew. Chem. Int. Ed. 2018; 57: 13028
  • 9 Dai CF, Cheng YF, Cui JM, Wang BH. Molecules 2010; 15: 5768
    • 10a Gramlich PM. E, Wirges CT, Manetto A, Carell T. Angew. Chem. Int. Ed. 2008; 47: 8350
    • 10b El-Sagheer AH, Brown T. Chem. Soc. Rev. 2010; 39: 1388
  • 11 Burgess K, Cook D. Chem. Rev. 2000; 100: 2047
    • 12a Ivancová I, Leone D.-L, Hocek M. Curr. Opin. Chem. Biol. 2019; 52: 136
    • 12b Weisbrod SH, Marx A. Chem. Commun. 2008; 5675
  • 13 Mansot J, Aubert S, Duchemin N, Vasseur JJ, Arseniyadis S, Smietana M. Chem. Sci. 2019; 10: 2875
    • 14a Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B. J. Am. Chem. Soc. 2008; 130: 12636
    • 14b Su L, Chen T, Xue T, Sheng A, Cheng L, Zhang J. ACS Appl. Mater. Interfaces 2020; 12: 7650
    • 15a Luvino D, Baraguey C, Smietana M, Vasseur JJ. Chem. Commun. 2008; 2352
    • 15b Martin AR, Mohanan K, Luvino D, Floquet N, Baraguey C, Smietana M, Vasseur JJ. Org. Biomol. Chem. 2009; 7: 4369
    • 15c Martin AR, Barvik I, Luvino D, Smietana M, Vasseur J.-J. Angew. Chem. Int. Ed. 2011; 50: 4193
    • 15d Barbeyron R, Vasseur J.-J, Smietana M. Chem. Sci. 2015; 6: 542
    • 15e Gimenez Molina A, Barvik I, Müller S, Vasseur J.-J, Smietana M. Org. Biomol. Chem. 2018; 16: 8824
    • 16a Reverte M, Barvik I, Vasseur JJ, Smietana M. Org. Biomol. Chem. 2017; 15: 8204
    • 16b Reverte M, Vaissiere A, Boisguerin P, Vasseur JJ, Smietana M. ACS Sensors 2016; 1: 970
    • 16c Reverte M, Vasseur J.-J, Smietana M. Org. Biomol. Chem. 2015; 13: 10604
    • 17a Lin N, Yan J, Huang Z, Altier C, Li MY, Carrasco N, Suyemoto M, Johnston L, Wang SM, Wang Q, Fang H, Caton-Williams J, Wang BH. Nucleic Acids Res. 2007; 35: 1222
    • 17b Yang X, Dai C, Molina AD. C, Wang B. Chem. Commun. 2010; 46: 1073
    • 18a Hargrove AE, Ellington AD, Anslyn EV, Sessler JL. Bioconjugate Chem. 2011; 22: 388
    • 18b Steinmeyer J, Wagenknecht H.-A. Bioconjugate Chem. 2018; 29: 431
    • 19a Dai C, Wang L, Sheng J, Peng H, Draganov AB, Huang Z, Wang B. Chem. Commun. 2011; 47: 3598
    • 19b Gordon CK. L, Wu D, Pusuluri A, Feagin TA, Csordas AT, Eisenstein MS, Hawker CJ, Niu J, Soh HT. ACS Chem. Biol. 2019; 14: 2652
    • 20a Chan DM. T, Monaco KL, Li R, Bonne D, Clark CG, Lam PY. S. Tetrahedron Lett. 2003; 44: 3863
    • 20b Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
    • 21a Luvino D, Amalric C, Smietana M, Vasseur JJ. Synlett 2007; 19: 3037
    • 21b Scrafton DK, Taylor JE, Mahon MF, Fossey JS, James TD. J. Org. Chem. 2008; 73: 2871
    • 21c Jin S, Choudhary G, Cheng Y, Dai C, Li M, Wang B. Chem. Commun. 2009; 5251
    • 21d Mothana S, Grassot J.-M, Hall DG. Angew. Chem. Int. Ed. 2010; 49: 2883
    • 21e Caselli E, Romagnoli C, Vahabi R, Taracila MA, Bonomo RA, Prati F. J. Med. Chem. 2015; 58: 5445
    • 22a Miller GP, Kool ET. Org. Lett. 2002; 4: 3599
    • 22b Miller GP, Kool ET. J. Org. Chem. 2004; 69: 2404
    • 23a Xu J, Wang X, Shao C, Su D, Cheng G, Hu Y. Org. Lett. 2010; 12: 1964
    • 23b Inamoto K, Nozawa K, Yonemoto M, Kondo Y. Chem. Commun. 2011; 47: 11775
  • 24 Warminski M, Kowalska J, Jemielity J. Org. Lett. 2017; 19: 3624
  • 25 Knapp DM, Gillis EP, Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
  • 26 Yan S, Lai X, Wang Y, Ye N, Xiang Y. Food Chem. 2019; 295: 36
    • 27a Sun X, Odyniec ML, Sedgwick AC, Lacina K, Xu S, Qiang T, Bull SD, Marken F, James TD. Org. Chem. Front. 2017; 4: 1058
    • 27b Sun X, Lacina K, Ramsamy EC, Flower SE, Fossey JS, Qian X, Anslyn EV, Bull SD, James TD. Chem. Sci. 2015; 6: 2963
  • 28 Lavergne T, Bertrand JR, Vasseur JJ, Debart F. Chem. Eur. J. 2008; 14: 9135
  • 29 Bouillon C, Meyer A, Vidal S, Jochum A, Chevolot Y, Cloarec JP, Praly JP, Vasseur JJ, Morvan F. J. Org. Chem. 2006; 71: 4700