Synthesis 2020; 52(17): 2483-2496
DOI: 10.1055/s-0040-1707185
short review
© Georg Thieme Verlag Stuttgart · New York

Catch It If You Can: Copper-Catalyzed (Transfer) Hydrogenation Reactions and Coupling Reactions by Intercepting Reactive Intermediates Thereof

Lea T. Brechmann
,
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany   Email: [email protected]
› Author Affiliations
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (German Research Council) (Emmy Noether Fellowship for J.F.T., TE1101/2-1) and by the Fonds der Chemischen Industrie (Liebig-Stipendium­ for J.F.T.).
Further Information

Publication History

Received: 21 May 2020

Accepted after revision: 18 June 2020

Publication Date:
13 July 2020 (online)


Abstract

The key reactive intermediate of copper(I)-catalyzed alkyne semihydrogenations is a vinylcopper(I) complex. This intermediate can be exploited as a starting point for a variety of trapping reactions. In this manner, an alkyne semihydrogenation can be turned into a dihydrogen­-mediated coupling reaction. Therefore, the development of copper-catalyzed (transfer) hydrogenation reactions is closely intertwined with the corresponding reductive trapping reactions. This short review highlights and conceptualizes the results in this area so far, with H2-mediated carbon–carbon and carbon–heteroatom bond-forming reactions emerging under both a transfer hydrogenation setting as well as with the direct use of H2. In all cases, highly selective catalysts are required that give rise to atom-economic multicomponent coupling reactions with rapidly rising molecular complexity. The coupling reactions are put into perspective by presenting the corresponding (transfer) hydrogenation processes first.

1 Introduction: H2-Mediated C–C Bond-Forming Reactions

2 Accessing Copper(I) Hydride Complexes as Key Reagents for Coupling Reactions; Requirements for Successful Trapping Reactions

3 Homogeneous Copper-Catalyzed Transfer Hydrogenations

4 Trapping of Reactive Intermediates of Alkyne Transfer Semi­hydrogenation Reactions: First Steps Towards Hydrogenative Alkyne Functionalizations

5 Copper(I)-Catalyzed Alkyne Semihydrogenations

6 Copper(I)-Catalyzed H2-Mediated Alkyne Functionalizations; Trapping of Reactive Intermediates from Catalytic Hydrogenations

6.1 A Detour: Copper(I)-Catalyzed Allylic Reductions, Catalytic Generation of Hydride Nucleophiles from H2

6.2 Trapping with Allylic Electrophiles: A Copper(I)-Catalyzed Hydro­allylation Reaction of Alkynes

6.3 Trapping with Aryl Iodides

7 Conclusion

 
  • References

  • 1 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014
  • 2 Organometallics in Synthesis, Third Manual . Schlosser M. John Wiley & Sins; Hoboken: 2013
  • 3 Anastas PT, Warner JC. Green Chemistry. Theory and Practice . Oxford University Press; Oxford: 2000
    • 4a Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
    • 4b Sheldon RA. Chem. Commun. 2008; 3352
    • 4c Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259
  • 5 Homogeneous Hydrogenation with Non-Precious Catalysts . Teichert JF. Wiley-VCH; Weinheim: 2020
  • 6 The Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2006
    • 7a Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
    • 7b Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
  • 8 Fischer F, Tropsch H. Ber. Dtsch. Chem. Ges. B 1923; 56B: 2428
    • 9a Herrmann WA. Angew. Chem. Int. Ed. 1982; 21: 117
    • 9b Rofer-DePoorter CK. Chem. Rev. 1981; 81: 447
  • 10 Roelen O. DE849548C, 1938
    • 11a Breit B. Acc. Chem. Res. 2003; 36: 264
    • 11b Breit B, Seiche W. Synthesis 2001; 1
    • 13a Schwartz LA, Krische MJ. Isr. J. Chem. 2018; 58: 45
    • 13b Hassan A, Krische MJ. Org. Process Res. Dev. 2011; 15: 1236
    • 13c Ngai M.-Y, Kong J.-R, Krische MJ. J. Org. Chem. 2007; 72: 1063
    • 13d Iida H, Krische MJ. Metal-Catalyzed Reductive C–C Bond Formation . In Topics in Current Chemistry, Vol. 279. Krische MJ. Springer-Verlag; Berlin: 2007: 77-104
    • 13e Jang H.-Y, Krische MJ. Acc. Chem. Res. 2004; 37: 653
  • 14 Kong J.-R, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2006; 128: 718
    • 15a Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang T. Green Chem. 2007; 9: 411
    • 15b Noyori R. Chem. Commun. 2005; 1807
    • 16a Non-Noble Metal Catalysis: Molecular Approaches and Reactions . Moret M.-E, Gebbink RJ. M. Wiley-VCH; Weinheim: 2019
    • 16b Alig L, Fritz M, Schneider S. Chem. Rev. 2019; 119: 2681
    • 16c Liu W, Sahoo B, Junge K, Beller M. Acc. Chem. Res. 2018; 51: 1858
    • 16d Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
    • 16e Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
    • 16f Li Y.-Y, Yu S.-L, Shen W.-Y, Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
    • 16g Zell T, Milstein D. Acc. Chem. Res. 2015; 48: 1979
    • 16h Bullock RM. Science 2013; 342: 1054

      For reviews, see:
    • 17a Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
    • 17b Mohr J, Oestreich M. Angew. Chem. Int. Ed. 2016; 55: 12148
    • 17c Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
    • 17d Sorádová Z, Šebesta R. ChemCatChem 2016; 8: 2581

      For selected examples, see:
    • 18a Miki Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 10830
    • 18b Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
    • 18c Miki Y, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1498
    • 18d Yang Y, Perry IB, Lu G, Liu P, Buchwald SL. Science 2016; 353: 144
    • 18e Shi S.-L, Wong ZL, Buchwald SL. Nature 2016; 532: 353
    • 18f Bandar JS, Ascic E, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 5821

      For reductive and borylative alkyne functionalizations, see:
    • 19a Suess A, Lalic G. Synlett 2016; 27: 1165
    • 19b Fujihara T, Semba K, Terao J, Tsuji Y. Catal. Sci. Technol. 2014; 4: 1699

      Closely related to the reductive alkyne functionalizations presented here are the corresponding borylative transformations. For reviews, see:
    • 20a Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
    • 20b Yoshida H. ACS Catal. 2016; 6: 1799
    • 20c Semba K, Fujihara T, Terao J, Tsuji Y. Tetrahedron 2015; 71: 2183

    • For selected examples, see:
    • 20d Alfaro R, Parra A, Alemán J, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
    • 20e Zhang L, Cheng J, Carry B, Hou Z. J. Am. Chem. Soc. 2012; 134: 14314
    • 20f Zhou Y, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
    • 20g Su W, Gong T.-J, Zhang Q, Zhang Q, Xiao B, Fu Y. ACS Catal. 2016; 6: 6417
    • 20h Itoh T, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2016; 138: 7528
    • 20i Rivera-Chao E, Fañanás-Mastral M. Angew. Chem. Int. Ed. 2018; 57: 9945
    • 20j Rivera-Chao E, Mitxelena M, Varela JA, Fañanás-Mastral M. Angew. Chem. Int. Ed. 2019; 58: 18230

      For reviews on copper(I) hydride chemistry, see:
    • 21a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
    • 21b Deutsch C, Krause N. Chem. Rev. 2008; 108: 2916
    • 21c Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
  • 22 Organosilicon Chemistry. Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019
  • 23 For the seminal report on catalytic copper(I) hydride chemistry employing hydrosilanes as reducing agents, see: Brunner H, Miehling W. J. Organomet. Chem. 1984; 275: c17

    • For the rare use of other hydride donors in copper(I) hydride chemistry, see:
    • 24a Lipshutz B, Ung C, Sengupta S. Synlett 1989; 64
    • 24b Lipshutz BH, Papa P. Angew. Chem. Int. Ed. 2002; 41: 4580
    • 24c Leung LT, Leung SK, Chiu P. Org. Lett. 2005; 7: 5249
    • 25a Oestreich M. Synlett 2007; 1629
    • 25b Rendler S, Plefka O, Karatas B, Auer G, Fröhlich R, Mück-Lichtenfeld C, Grimme S, Oestreich M. Chem. Eur. J. 2008; 14: 11512
    • 25c Gathy T, Peeters D, Leyssens T. J. Organomet. Chem. 2009; 694: 3943
    • 25d Vergote T, Nahra F, Merschaert A, Riant O, Peeters D, Leyssens T. Organometallics 2014; 33: 1953

      As an alternative, copper(I) hydrides can be formed directly from copper(II) acetate and a hydrosilane, without addition of an alkoxide as activator. The mechanistic basis for this process has not been studied. For examples, see:
    • 26a Niljianskul N, Zhu S, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 1638
    • 26b Gribble MW, Pirnot MT, Bandar JS, Liu RY, Buchwald SL. J. Am. Chem. Soc. 2017; 139: 2192
    • 27a Chalk AJ, Halpern J. J. Am. Chem. Soc. 1959; 81: 5852
    • 27b Halpern J. J. Phys. Chem. 1959; 63: 398
    • 27c Goeden GV, Caulton KG. J. Am. Chem. Soc. 1981; 103: 7354
  • 28 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
  • 29 Thiel NO, Pape F, Teichert JF. In Homogeneous Hydrogenation with Non-Precious Catalysts . Teichert JF. Wiley-VCH; Weinheim: 2020: 87-109
    • 30a Calvin M. Trans. Faraday Soc. 1938; 34: 1181
    • 30b Calvin M. J. Am. Chem. Soc. 1939; 61: 2230
  • 31 Catalytic hydrofunctionalizations of alkenes are also a mainstay of modern copper hydride chemistry, see Refs. 17 and 18. For the sake of close comparison and clarity, we herein focus on alkynes as unsaturated starting materials.
  • 32 Mankad NP, Laitar DS, Sadighi JP. Organometallics 2004; 23: 3369

    • For reviews on transfer hydrogenation, see:
    • 33a Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 33b Ikariya T, Blacker AJ. Acc. Chem. Res. 2007; 40: 1300
    • 33c Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
    • 34a Staubitz A, Robertson AP. M, Manners I. Chem. Rev. 2010; 110: 4079
    • 34b Hamilton CW, Baker RT, Staubitz A, Manners I. Chem. Soc. Rev. 2009; 38: 279
  • 35 Korytiaková E, Thiel NO, Pape F, Teichert JF. Chem. Commun. 2017; 53: 732
  • 36 Fortman GC, Slawin AM. Z, Nolan SP. Organometallics 2010; 29: 3966
  • 37 For a review on metal hydroxide complexes, see: Nelson DJ, Nolan SP. Coord. Chem. Rev. 2017; 353: 278
  • 38 Thiel NO, Teichert JF. Org. Biomol. Chem. 2016; 14: 10660
  • 39 Thiel NO, Kemper S, Teichert JF. Tetrahedron 2017; 73: 5023

    • For reviews on copper(I)/NHC complexes, see:
    • 40a Budagumpi S, Keri RS, Achar G, Brinda KN. Adv. Synth. Catal. 2020; 362: 970
    • 40b Danopoulos AA, Simler T, Braunstein P. Chem. Rev. 2019; 119: 3730
    • 40c Yong X, Thurston R, Ho C.-Y. Synthesis 2019; 51: 2058
    • 40d Nahra F, Gómez-Herrera A, Cazin CS. J. Dalton Trans. 2017; 46: 628
    • 40e Lazreg F, Nahra F, Cazin CS. J. Coord. Chem. Rev. 2015; 293-294: 48
    • 40f Egbert JD, Cazin CS. J, Nolan SP. Catal. Sci. Technol. 2013; 3: 912
    • 40g Lin JC. Y, Huang RT. W, Lee CS, Bhattacharyya A, Hwang WS, Lin IJ. B. Chem. Rev. 2009; 109: 3561
  • 41 Cao H, Chen T, Zhou Y, Han D, Yin S.-F, Han L.-B. Adv. Synth. Catal. 2014; 356: 765
  • 42 Kaicharla T, Zimmermann BM, Oestreich M, Teichert JF. Chem. Commun. 2019; 55: 13410
  • 43 For a related but conceptually different approach to copper(I)-catalyzed alkyne semireductions, see: Bao H, Zhou B, Jin H, Liu Y. J. Org. Chem. 2019; 84: 3579
  • 44 Das M, Kaicharla T, Teichert JF. Org. Lett. 2018; 20: 4926
  • 45 For a good overview on synthetic approaches, see: Olpp T, Brückner R. Synthesis 2004; 2135
  • 46 Mailig M, Hazra A, Armstrong MK, Lalic G. J. Am. Chem. Soc. 2017; 139: 6969
    • 47a Dang H, Cox N, Lalic G. Angew. Chem. Int. Ed. 2014; 53: 752
    • 47b Scharfbier J, Oestreich M. Synlett 2016; 27: 1274
    • 47c Scharfbier J, Hazrati H, Irran E, Oestreich M. Org. Lett. 2017; 19: 6562
  • 48 Noteworthy is the fact that while NCS and NIS were employed under the optimized conditions for chlorinations and iodinations, respectively, N-bromosuccinimide (NBS) led to unselective reactions in the corresponding hydrobrominations.
  • 49 Uehling MR, Rucker RP, Lalic G. J. Am. Chem. Soc. 2014; 136: 8799
  • 50 Wang J. Stereoselective Alkene Synthesis . In Topics in Current Chemistry, Vol. 327. Springer-Verlag; Berlin: 2012
  • 51 Lindlar H. Helv. Chim. Acta 1952; 35: 446

    • For reviews on alkyne semihydrogenation, see:
    • 52a Sharma DM, Punji B. Chem. Asian J. 2020; 690
    • 52b Oger C, Balas L, Durand T, Galano J.-M. Chem. Rev. 2013; 113: 1313
    • 52c Crespo-Quesada M, Cárdenas-Lizana F, Dessimoz A.-L, Kiwi-Minsker L. ACS Catal. 2012; 2: 1773
    • 52d Molnár Á, Sárkány A, Varga M. J. Mol. Catal. A. 2001; 173: 185
    • 53a Daeuble JF, McGettigan C, Stryker JM. Tetrahedron Lett. 1990; 31: 2397
    • 53b Semba K, Fujihara T, Xu T, Terao J, Tsuji Y. Adv. Synth. Catal. 2012; 354: 1542
    • 53c Whittaker AM, Lalic G. Org. Lett. 2013; 15: 1112
    • 53d Cox N, Dang H, Whittaker AM, Lalic G. Tetrahedron 2014; 70: 4219
  • 54 Semba K, Kameyama R, Nakao Y. Synlett 2015; 26: 318
  • 55 Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934
  • 56 For a review on ‘tethered’ NHC ligands, see: Pape F, Teichert JF. Eur. J. Org. Chem. 2017; 4206
  • 57 Wakamatsu T, Nagao K, Ohmiya H, Sawamura M. Organometallics 2016; 35: 1354
  • 58 Pape F, Brechmann LT, Teichert JF. Chem. Eur. J. 2019; 25: 985
  • 59 Gant TG. J. Med. Chem. 2014; 57: 3595
  • 60 Dickschat JS. Eur. J. Org. Chem. 2017; 4872
    • 61a Atzrodt J, Derdau V, Fey T, Zimmermann J. Angew. Chem. Int. Ed. 2007; 46: 7744
    • 61b Jones WD. Acc. Chem. Res. 2003; 36: 140

      A similar influence of the alkene geometry on the outcome of the catalytic reaction has also been observed in related reactions, see:
    • 63a Harada A, Makida Y, Sato T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2014; 136: 13932
    • 63b Yasuda Y, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2016; 55: 10816
    • 64a Nguyen TN. T, Thiel NO, Pape F, Teichert JF. Org. Lett. 2016; 18: 2455
    • 64b Nguyen TN. T, Thiel NO, Teichert JF. Chem. Commun. 2017; 53: 11686

      For reviews on copper(I)-catalyzed allylic substitutions, see:
    • 65a Baslé O, Denicourt-Nowicki A, Crévisy C, Mauduit M. In Copper-Catalyzed Asymmetric Synthesis . Alexakis A, Krause N, Woodward S. Wiley-VCH; Weinheim: 2014: 85-126
    • 65b Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824
    • 65c Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
  • 66 Xu G, Zhao H, Fu B, Cang A, Zhang G, Zhang Q, Xiong T, Zhang Q. Angew. Chem. 2017; 56: 13130
  • 67 Brechmann, L. T., Teichert, J. F. unpublished results.
  • 68 Enantioselective copper(I)-catalyzed hydrogen-mediated coupling could be achieved employing chiral NHC ligands.
  • 69 In all reactions, less than 10% of the semihydrogenation products were detected. In the case of 64c, the amount of semihydrogenation product was 25%.
  • 70 Less than 5% of the triene was detected.
  • 71 Semba K, Kameyama R, Nakao Y. Chem. Lett. 2018; 47: 213

    • For related three-component reactions employing hydrosilanes as the hydride source, see:
    • 72a Semba K, Ariyama K, Zheng H, Kameyama R, Sakaki S, Nakao Y. Angew. Chem. Int. Ed. 2016; 55: 6275
    • 72b Armstrong MK, Goodstein MB, Lalic G. J. Am. Chem. Soc. 2018; 140: 10233
  • 73 Reversion of stereoselectivity due to change of IUPAC priority rules.