Synlett 2020; 31(17): 1663-1680
DOI: 10.1055/s-0040-1707155
account
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Functions of Oligomeric and Multidentate Dipyrrin Derivatives and their Complexes

Yusuke Chiba
,
,
Ryota Matsuoka
,
This work was supported by the Mitsubishi Foundation, Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (JSPS, Grant No. JP18H01959), Grants-in-Aid for Early-Career Scientists from the Japan Society for the Promotion of Science (JSPS, Grant No. JP19K15578, JP19K15579, and JP19K15529), and Grant-in-Aid for Scientific Research on Innovative Areas ‘Coordination Asymmetry’ from the Japan Society for the Promotion of Science (JSPS, Grant No. JP19H04559).
Further Information

Publication History

Received: 30 April 2020

Accepted after revision: 20 May 2020

Publication Date:
24 July 2020 (online)


Abstract

The dipyrrin–metal complexes and especially the boron complex 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) have recently attracted considerable attention because of their interesting properties and possible applications. We have developed two unique and useful ways to extend versatility and usefulness of the dipyrrin complexes. The first one is the linear and macrocyclic oligomerization of the BODIPY units. These arrangements of the B–F moieties of the oligomerized BODIPY units provide sophisticated functions, such as unique recognition ability toward cationic guest, associated with changes in the photophysical properties by utilizing unprecedented interactions between the B–F and a cationic species. The second one is introduction of additional ligating moieties into the dipyrrin skeleton. The multidentate N2Ox dipyrrin ligands thus obtained form a variety of complexes with 13 and 14 group elements, which are difficult to synthesize using the original N2 dipyrrin derivatives. Interestingly, these unique complexes exhibit novel structures, properties, and functions such as guest recognition, stimuli-responsive structural conversion, switching of the optical properties, excellent stability of the neutral radicals, etc. We believe that these multifunctional dipyrrin complexes will advance the basic chemistry of the dipyrrin complexes and develop their applications in the materials and medicinal chemistry fields.

1 Introduction

2 Linear Oligomers of Boron–Dipyrrin Complexes

3 Cyclic Oligomers of Boron–Dipyrrin Complexes

4 A Cyclic Oligomer of Zinc–Dipyrrin Complexes

5 Group 13 Element Complexes of N2Ox Dipyrrins

6 Chiral N2 and N2Ox Dipyrrin Complexes

7 Group 14 Element Complexes of N2O2 Dipyrrins

8 Other N2O2 Dipyrrin Complexes with Unique Properties and Functions

9 Conclusion

 
  • References and Notes

  • 1 Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
  • 2 Ziessel R, Ulrich G, Harriman A. New J. Chem. 2007; 31: 496
  • 3 Ulrich G, Ziessel R, Harriman A. Angew. Chem. Int. Ed. 2008; 47: 1184
  • 4 Bañuelos J. Chem. Rec. 2016; 16: 335
  • 5 Treibs A, Kreuzer F.-H. Liebigs Ann. Chem. 1968; 718: 208
  • 6 Gonçalves MS. T. Chem. Rev. 2009; 109: 190
  • 7 de Rezende LC. D, Emery FS. Orbital: Electron. J. Chem. 2013; 5: 62
  • 8 Yuan L, Lin W, Zheng K, He L, Huang W. Chem. Soc. Rev. 2013; 42: 622
  • 9 Umezawa K, Citterio D, Suzuki K. Anal. Sci. 2014; 30: 327
  • 10 Kowada T, Maeda H, Kikuchi K. Chem. Soc. Rev. 2015; 44: 4953
  • 11 Ashton TD, Jolliffe KA, Pfeffer FM. Chem. Soc. Rev. 2015; 44: 4547
  • 12 Kolemen S, Akkaya EU. Coord. Chem. Rev. 2018; 354: 121
  • 13 Benniston AC, Copley G. Phys. Chem. Chem. Phys. 2009; 11: 4124
  • 14 Boens N, Leen V, Dehaen W. Chem. Soc. Rev. 2012; 41: 1130
  • 15 Ni Y, Wu J. Org. Biomol. Chem. 2014; 12: 3774
  • 16 Lu H, Mack J, Yang Y, Shen Z. Chem. Soc. Rev. 2014; 43: 4778
  • 17 Nepomnyashchii AB, Bard AJ. Acc. Chem. Res. 2012; 45: 1844
  • 18 Ho D, Ozdemir R, Kim H, Earmme T, Usta H, Kim C. ChemPlusChem 2019; 84: 18
  • 19 Benstead M, Mehl GH, Boyle RW. Tetrahedron 2011; 67: 3573
  • 20 Bonardi L, Kanaan H, Camerel F, Jolinat P, Retailleau P, Ziessel R. Adv. Funct. Mater. 2008; 18: 401
  • 21 Ziessel R, Bonardi L, Retailleau P, Camerel F. C. R. Chim. 2008; 11: 716
  • 22 Xiao S, Cao Q, Dan F. Curr. Org. Chem. 2012; 16: 2970
  • 23 Squeo BM, Pasini M. Supramol. Chem. 2020; 32: 56
  • 24 Li X, Kolemen S, Yoon J, Akkaya EU. Adv. Funct. Mater. 2017; 27: 1604053
  • 25 Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K. Chem. Soc. Rev. 2013; 42: 77
  • 26 Zhao J, Wu W, Sun J, Guo S. Chem. Soc. Rev. 2013; 42: 5323
  • 27 Singh SP, Gayathri T. Eur. J. Org. Chem. 2014; 4689
  • 28 Bessette A, Hanan GS. Chem. Soc. Rev. 2014; 43: 3342
  • 29 Harriman A. Chem. Commun. 2015; 51: 11745
  • 30 Okada D, Nakamura T, Braam D, Dao TD, Ishii S, Nagao T, Lorke A, Nabeshima T, Yamamoto Y. ACS Nano 2016; 10: 7058
  • 31 Boens N, Verbelen B, Dehaen W. Eur. J. Org. Chem. 2015; 6577
  • 32 Boens N, Verbelen B, Ortiz MJ, Jiao L, Dehaen W. Coord. Chem. Rev. 2019; 399: 213024
  • 33 Kim H, Burghart A, Welch MB, Reibenspies J, Burgess K. Chem. Commun. 1999; 1889
  • 34 Nagai A, Miyake J, Kokado K, Nagata Y, Chujo Y. J. Am. Chem. Soc. 2008; 130: 15276
  • 35 Hayashi Y, Yamaguchi S, Cha WY, Kim D, Shinokubo H. Org. Lett. 2011; 13: 2992
  • 36 Poirel A, de Nicola A, Retailleau P, Ziessel R. J. Org. Chem. 2012; 77: 7512
  • 37 Verbelen B, Leen V, Wang L, Boens N, Dehaen W. Chem. Commun. 2012; 48: 9129
  • 38 Kolemen S, Cakmak Y, Kostereli Z, Akkaya EU. Org. Lett. 2014; 16: 660
  • 39 Shimizu S, Iino T, Saeki A, Seki S, Kobayashi N. Chem. Eur. J. 2015; 21: 2893
  • 40 Patalag LJ, Ho LP, Jones PG, Werz DB. J. Am. Chem. Soc. 2017; 139: 15104
  • 41 Ahrens J, Haberlag B, Scheja A, Tamm M, Bröring M. Chem. Eur. J. 2014; 20: 2901
  • 42 Zhang W, Sheng W, Yu C, Wei Y, Wang H, Hao E, Jiao L. Chem. Commun. 2017; 53: 5318
  • 43 Cakmak Y, Akkaya EU. Org. Lett. 2009; 11: 85
  • 44 Yokoi H, Hiroto S, Shinokubo H. Org. Lett. 2014; 16: 3004
  • 45 Sakamoto N, Ikeda C, Yamamura M, Nabeshima T. Chem. Commun. 2012; 48: 4818
  • 46 Goeb S, Ziessel R. Org. Lett. 2007; 9: 737
  • 47 Rihn S, Retailleau P, Bugsaliewicz N, de Nicola A, Ziessel R. Tetrahedron Lett. 2009; 50: 7008
  • 48 Sobenina LN, Vasil’tsov AM, Petrova OV, Petrushenko KB, Ushakov IA, Clavier G, Meallet-Renault R, Mikhaleva AI, Trofimov BA. Org. Lett. 2011; 13: 2524
  • 49 Poirel A, de Nicola A, Ziessel R. Org. Lett. 2012; 14: 5696
  • 50 Liu X, Xu Z, Cole JM. J. Phys. Chem. C 2013; 117: 16584
  • 51 Poirel A, Retailleau P, de Nicola A, Ziessel R. Chem. Eur. J. 2014; 20: 1252
  • 52 Suda Y, Nishiyabu R, Kubo Y. Tetrahedron 2015; 71: 4174
  • 53 Saino S, Saikawa M, Nakamura T, Yamamura M, Nabeshima T. Tetrahedron Lett. 2016; 57: 1629
  • 54 Miki K, Enomoto A, Inoue T, Nabeshima T, Saino S, Shimizu S, Matsuoka H, Ohe K. Biomacromolecules 2017; 18: 249
  • 55 Taguchi D, Nakamura T, Horiuchi H, Saikawa M, Nabeshima T. J. Org. Chem. 2018; 83: 5331
  • 56 Köhler T, Hodgson MC, Seidel D, Veauthier JM, Meyer S, Lynch V, Boyd PD. W, Brothers PJ, Sessler JL. Chem. Commun. 2004; 1060
  • 57 Ikeda C, Nabeshima T. Chem. Commun. 2008; 721
  • 58 Sakida T, Yamaguchi S, Shinokubo H. Angew. Chem. Int. Ed. 2011; 50: 2280
  • 59 Maeda H, Nishimura Y, Hiroto S, Shinokubo H. Dalton Trans. 2013; 42: 15885
  • 60 Ishimaru Y, Shimoyama N, Fujihara T, Watanabe K, Setsune J. Chem. Asian J. 2015; 10: 329
  • 61 Ahrens J, Scheja A, Wicht R, Bröring M. Eur. J. Org. Chem. 2016; 2864
  • 62 Ishida M, Omagari T, Hirosawa R, Jono K, Sung YM, Yasutake Y, Uno H, Toganoh M, Nakanotani H, Fukatsu S, Kim D, Furuta H. Angew. Chem. Int. Ed. 2016; 55: 12045
  • 63 Tsuchiya M, Sakamoto R, Shimada M, Yamanoi Y, Hattori Y, Sugimoto K, Nishibori E, Nishihara H. Chem. Commun. 2017; 53: 7509
  • 64 Ke X.-S, Kim T, Lynch VM, Kim D, Sessler JL. J. Am. Chem. Soc. 2017; 139: 13950
  • 65 Chua MH, Kim T, Lim ZL, Gopalakrishna TY, Ni Y, Xu J, Kim D, Wu J. Chem. Eur. J. 2018; 24: 2232
  • 66 Ikeda C, Sakamoto N, Nabeshima T. Org. Lett. 2008; 10: 4601
  • 67 In the figures showing the structures of cyclic dipyrrin/BODIPY oligomers, the hydrogens involved in the intermolecular hydrogen bonds and the N–H hydrogens in H2 L32PO2 are shown. However, the other hydrogens and the aryl groups at meso positions are omitted for clarity. Hydrogen bonds are shown in red dotted lines. C of dipyrrin/BODIPY oligomers: light green, C of guests: black, O: red, N: blue, B: pink, F: yellow-green, Cl: green, Na: purple, Zn: dark purple, Al: pink, Ga: pink, In: pink, Si: yellow, Pt: light purple, P: orange, H: white.
  • 68 Sakamoto N, Ikeda C, Nabeshima T. Chem. Commun. 2010; 46: 6732
  • 69 Nakamura T, Yamaguchi G, Nabeshima T. Angew. Chem. Int. Ed. 2016; 55: 9606
  • 70 Hojo T, Matsuoka R, Nabeshima T. Inorg. Chem. 2019; 58: 995
  • 71 Hojo T, Nakamura T, Matsuoka R, Nabeshima T. Heteroat. Chem. 2018; 29: e21470
  • 72 Uchida J, Nakamura T, Yamamura M, Yamaguchi G, Nabeshima T. Org. Lett. 2016; 18: 5380
  • 73 Wood TE, Thompson A. Chem. Rev. 2007; 107: 1831
  • 74 Baudron SA. Dalton Trans. 2013; 42: 7498
  • 75 Guski S, Albrecht M, Willms T, Albrecht M, Nabeshima T, Pan F, Puttreddy R, Rissanen K. Chem. Commun. 2017; 53: 3213
  • 76 Sakamoto R, Iwashima T, Tsuchiya M, Toyoda R, Matsuoka R, Kögel JF, Kusaka S, Hoshiko K, Yagi T, Nagayama T, Nishihara H. J. Mater. Chem. A 2015; 3: 15357
  • 77 Matsuoka R, Nabeshima T. Front. Chem. 2018; 6: 349
  • 78 Setsune J, Kawama M, Nishinaka T. Tetrahedron Lett. 2011; 52: 1773
  • 79 Hashimoto T, Nishimura T, Lim JM, Kim D, Maeda H. Chem. Eur. J. 2010; 16: 11653
  • 80 Maeda H, Nishimura T, Akuta R, Takaishi K, Uchiyama M, Muranaka A. Chem. Sci. 2013; 4: 1204
  • 81 Allred AL. J. Inorg. Nucl. Chem. 1961; 17: 215
  • 82 Ikeda C, Ueda S, Nabeshima T. Chem. Commun. 2009; 2544
  • 83 Sumiyoshi A, Chiba Y, Matsuoka R, Noda T, Nabeshima T. Dalton Trans. 2019; 48: 13169
  • 84 Li F, Yang SI, Ciringh Y, Seth J, Martin CH. III, Singh DL, Kim D, Birge RR, Bocian DF, Holten D, Lindsey JS. J. Am. Chem. Soc. 1998; 120: 10001
  • 85 Sazanovich IV, Kirmaier C, Hindin E, Yu L, Bocian DF, Lindsey JS, Holten D. J. Am. Chem. Soc. 2004; 126: 2664
  • 86 Kee HL, Kirmaier C, Yu L, Thamyongkit P, Youngblood WJ, Calder ME, Ramos L, Noll BC, Bocian DF, Scheidt WR, Birge RR, Lindsey JS, Holten D. J. Phys. Chem. B 2005; 109: 20433
  • 87 Thoi VS, Stork JR, Magde D, Cohen SM. Inorg. Chem. 2006; 45: 10688
  • 88 Stork JR, Thoi VS, Cohen SM. Inorg. Chem. 2007; 46: 11213
  • 89 Zhang Z, Dolphin D. Inorg. Chem. 2010; 49: 11550
  • 90 Rumyantsev E, Aleshim AN, Antina EV. Izv. Vyss. Uchebn. Zaved., Khim. Khim. Tekhnol. 2011; 54: 30
  • 91 Zhang Z, Chen Y, Dolphin D. Dalton Trans. 2012; 41: 4751
  • 92 Kusaka S, Sakamoto R, Nishihara H. Inorg. Chem. 2014; 53: 3275
  • 93 Gutsche CS, Gräfe S, Gitter B, Flanagan KJ, Senge MO, Kulak N, Wiehe A. Dalton Trans. 2018; 47: 12373
  • 94 Saikawa M, Daicho M, Nakamura T, Uchida J, Yamamura M, Nabeshima T. Chem. Commun. 2016; 52: 4014
  • 95 Clapham DE. Cell 2007; 131: 1047
  • 96 Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. New Phytol. 2018; 218: 414
  • 97 Saikawa M, Nakamura T, Uchida J, Yamamura M, Nabeshima T. Chem. Commun. 2016; 52: 10727
  • 98 Saikawa M, Nakamura T, Uchida J, Yamamura M, Nabeshima T. Chem. Commun. 2018; 54: 10379
  • 99 Tsien RY. Biochemistry 1980; 19: 2396
  • 100 Sánchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de lla Moya S. Chem. Eur. J. 2015; 21: 13488
  • 101 Lu H, Mack J, Nyokong T, Kobayashi N, Shen Z. Coord. Chem. Rev. 2016; 318: 1
  • 102 Gossauer A, Fehr F, Nydegger F, Stöckli-Evans H. J. Am. Chem. Soc. 1997; 119: 1599
  • 103 Beer G, Niederalt C, Grimme S, Daub J. Angew. Chem. Int. Ed. 2000; 39: 3252
  • 104 Beer G, Rurack K, Daub J. Chem. Commun. 2001; 1138
  • 105 Gossauer A, Nydegger F, Kiss T, Sleziak R, Stoeckli-Evans H. J. Am. Chem. Soc. 2004; 126: 1772
  • 106 Móczár I, Huszthy P, Maidics Z, Kádár M, Tóth K. Tetrahedron 2009; 65: 8250
  • 107 Sánchez-Carnerero EM, Moreno F, Maroto BL, Agarrabeitia AR, Bañuelos J, Arbeloa T, López-Arbeloa I, Ortiz MJ, de la Moya S. Chem. Commun. 2013; 49: 11641
  • 108 Sánchez-Carnerero EM, Moreno F, Maroto BL, Agarrabeitia AR, Ortiz MJ, Vo BG, Muller G, de la Moya S. J. Am. Chem. Soc. 2014; 136: 3346
  • 109 Zhang S, Wang Y, Meng F, Dai C, Cheng Y, Zhu C. Chem. Commun. 2015; 51: 9014
  • 110 Ray C, Sánchez-Carnerero EM, Moreno F, Maroto BL, Agarrabeitia AR, Ortiz MJ, López-Arbeloa Í, Bañuelos J, Cohovi KD, Lunkley JL, Muller G, de la Moya S. Chem. Eur. J. 2016; 22: 8805
  • 111 Jiménez J, Cerdán L, Moreno F, Maroto BL, García-Moreno I, Lunkley JL, Muller G, de la Moya S. J. Phys. Chem. C 2017; 121: 5287
  • 112 Lerrick RI, Winstanley TP. L, Haggerty K, Wills C, Clegg W, Harrington RW, Bultinck P, Herrebout W, Benniston AC, Hall MJ. Chem. Commun. 2014; 50: 4714
  • 113 Bruhn T, Pescitelli G, Jurinovich S, Schaumlöffel A, Witterauf F, Ahrens J, Bröring M, Bringmann G. Angew. Chem. Int. Ed. 2014; 53: 14592
  • 114 Zinna F, Bruhn T, Guido CA, Ahrens J, Bröring M, di Bari L, Pescitelli G. Chem. Eur. J. 2016; 22: 16089
  • 115 Abbate S, Bruhn T, Pescitelli G, Longhi G. J. Phys. Chem. A 2017; 121: 394
  • 116 Haefele A, Zedde C, Retailleau P, Ulrich G, Ziessel R. Org. Lett. 2010; 12: 1672
  • 117 Clarke R, Ho KL, Alsimaree AA, Woodford OJ, Waddell PG, Bogaerts J, Herrebout W, Knight JG, Pal R, Penfold TJ, Hall MJ. ChemPhotoChem 2017; 1: 513
  • 118 Alnoman RB, Rihn S, O’Connor DC, Black FA, Costello B, Waddell PG, Clegg W, Peacock RD, Herrebout W, Knight JG, Hall MJ. Chem. Eur. J. 2016; 22: 93
  • 119 Saikawa M, Noda T, Matsuoka R, Nakamura T, Nabeshima T. Eur. J. Inorg. Chem. 2019; 766
  • 120 Richards GJ, Gobo Y, Yamamura M, Nabeshima T. New J. Chem. 2015; 39: 5886
  • 121 Gobo Y, Yamamura M, Nakamura T, Nabeshima T. Org. Lett. 2016; 18: 2719
  • 122 Gobo Y, Matsuoka R, Chiba Y, Nakamura T, Nabeshima T. Tetrahedron Lett. 2018; 59: 4149
  • 123 Sirbu D, Benniston AC, Harriman A. Org. Lett. 2017; 19: 1626
  • 124 Chen N, Zhang W, Chen S, Wu Q, Yu C, Wei Y, Xu Y, Hao E, Jiao L. Org. Lett. 2017; 19: 2026
  • 125 Sakamoto N, Ikeda C, Yamamura M, Nabeshima T. J. Am. Chem. Soc. 2011; 133: 4726
  • 126 Yamamura M, Takizawa H, Sakamoto N, Nabeshima T. Tetrahedron Lett. 2013; 54: 7049
  • 127 Yamamura M, Albrecht M, Albrecht M, Nishimura Y, Arai T, Nabeshima T. Inorg. Chem. 2014; 53: 1355
  • 128 Nakano K, Kobayashi K, Nozaki K. J. Am. Chem. Soc. 2011; 133: 10720
  • 129 Ohkawara T, Suzuki K, Nakano K, Mori S, Nozaki K. J. Am. Chem. Soc. 2014; 136: 10728
  • 130 Nabeshima T, Yamamura M, Richards GJ, Nakamura T. J. Synth. Org. Chem., Jpn. 2015; 73: 1111
  • 131 Rausaria S, Kamadulski A, Rath NP, Bryant L, Chen Z, Salvemini D, Neumann WL. J. Am. Chem. Soc. 2011; 133: 4200
  • 132 El Ghachtouli S, Wójcik K, Copey L, Szydlo F, Framery E, Goux-Henry C, Billon L, Charlot M.-F, Guillot R, Andrioletti B, Aukauloo A. Dalton Trans. 2011; 40: 9090
  • 133 Lecarme L, Chiang L, Moutet J, Leconte N, Philouze C, Jarjayes O, Storr T, Thomas F. Dalton Trans. 2016; 45: 16325
  • 134 Kochem A, Chiang L, Baptiste B, Philouze C, Leconte N, Jarjayes O, Storr T, Thomas F. Chem. Eur. J. 2012; 18: 14590
  • 135 Feng Y, Burns LA, Lee L.-C, Sherrill CD, Jones CW, Murdock C. Inorg. Chim. Acta 2015; 430: 30
  • 136 Shan W, Desbois N, Pacquelet S, Brandès S, Rousselin Y, Conradie J, Ghosh A, Gros CP, Kadish KM. Inorg. Chem. 2019; 58: 7677
  • 137 Moutet J, Philouze C, du Moulinet d’Hardemare A, Leconte N, Thomas F. Inorg. Chem. 2017; 56: 6380
  • 138 Setsune J, Omae S. Chem. Lett. 2012; 41: 168
  • 139 Lecarme L, Kochem A, Chiang L, Moutet J, Berthiol F, Philouze C, Leconte N, Storr T, Thomas F. Inorg. Chem. 2018; 57: 9708
  • 140 Thomas KE, Desbois N, Conradie J, Teat SJ, Gros CP, Ghosh A. RSC Adv. 2020; 10: 533
  • 141 Yamamura M, Takizawa H, Gobo Y, Nabeshima T. Dalton Trans. 2016; 45: 6834
  • 142 Yamamura M, Takizawa H, Nabeshima T. Org. Lett. 2015; 17: 3114
  • 143 Jiang X.-D, Zhao J, Xi D, Yu H, Guan J, Li S, Sun C.-L, Xiao L.-J. Chem. Eur. J. 2015; 21: 6079
  • 144 Fihey A, Favennec A, Le Guennic B, Jacquemin D. Phys. Chem. Chem. Phys. 2016; 18: 9358
  • 145 Wan W, Silva MS, McMillen CD, Creager SE, Smith RC. J. Am. Chem. Soc. 2019; 141: 8703