Synthesis 2020; 52(20): 2899-2921
DOI: 10.1055/s-0040-1707136
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Photocatalytic C–N Bond Coupling Reactions

,
,
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong   Email: wing-yiu.yu@polyu.edu.hk
› Author Affiliations
The authors thank the Research Grants Council, University Grants Committee (Hong Kong) (153037/14P, 153152/16P, 153023/17P, 153017/19P, C5023-14G), The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology and the State Key Laboratory for Chemical Biology and Drug Discovery (Hong Kong) for financial support.
Further Information

Publication History

Received: 04 March 2020

Accepted after revision: 04 May 2020

Publication Date:
03 June 2020 (online)


Abstract

Catalytic C–N bond formation is one of the major research topics in synthetic chemistry owing to the ubiquity of amino groups in natural products, synthetic intermediates and pharmaceutical agents. In parallel with well-established metal-catalyzed C–N bond coupling protocols, photocatalytic reactions have recently emerged as efficient and selective alternatives for the construction of C–N bonds. In this review, the progress made on photocatalytic C–N bond coupling reactions between 2012 and February 2020 is summarized.

1 Introduction

1.1 General Mechanisms for Photoredox Catalysis

1.2 Pioneering Work

2 C(sp2)–N Bond Formation

2.1 Protocols Involving an External Oxidant

2.2 Oxidant-Free Protocols

3 C(sp3)–N Bond Formation

3.1 Direct Radical–Radical Coupling

3.2 Addition Reactions to Alkenes

3.3 Reductive Amination of Carbonyl Compounds

3.4 Decarboxylative Amination

4 Cyclization Reactions

4.1 C(sp2)–N Heterocycle Formation

4.2 C(sp3)–N Heterocycle Formation

5 Other Examples

6 Conclusion and Outlook

 
  • References

    • 2a Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 2b Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 2c Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 2d Bariwal J, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 9283
    • 2e Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753
    • 3a Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 3b Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525

      For a review on the Buchwald–Hartwig coupling, see:
    • 4a Heravi MM, Kheilkordi Z, Zadsirjan V, Heydari M, Malmir M. J. Organomet. Chem. 2018; 861: 17
    • 4b For a review on the Chan–Evans–Lam coupling, see: West MJ, Fyfe JW. B, Vantourout JC, Watson AJ. B. Chem. Rev. 2019; 119: 12491
    • 5a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 5b Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
    • 5c Zhang H, Lei A. Asian J. Org. Chem. 2018; 7: 1164
    • 5d Zhang H, Lei A. Synthesis 2018; 51: 83
    • 6a Liu W, Li J, Querard P, Li C.-J. J. Am. Chem. Soc. 2019; 141: 6755
    • 6b Festa AA, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2019; 48: 4401
    • 6c Uygur M, Garcia Mancheño O. Org. Biomol. Chem. 2019; 17: 5475
    • 6d An X.-D, Yu S. Tetrahedron Lett. 2018; 59: 1605
    • 6e Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
    • 6f Staveness D, Bosque I, Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
    • 6g Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 6h Narayanam JM. R, Stephenson CR. Chem. Soc. Rev. 2011; 40: 102
    • 6i Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
  • 7 Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527

    • For reviews on C–N coupling using Ru/Ir-based polypyridyl complexes, see:
    • 8a Angerani S, Winssinger N. Chem. Eur. J. 2019; 25: 6661
    • 8b Huang X, Meggers E. Acc. Chem. Res. 2019; 52: 833
    • 8c Lekkala R, Lekkala R, Moku B, Rakesh KP, Qin H.-L. Eur. J. Org. Chem. 2019; 2769
    • 8d Xia Q, Dong J, Song H, Wang Q. Chem. Eur. J. 2019; 25: 2949
    • 8e Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
    • 8f Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 8g Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387

    • For reviews on C–N coupling using organic dyes, see:
    • 8h Sharma S, Sharma A. Org. Biomol. Chem. 2019; 17: 4384
    • 8i Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 8j Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
    • 8k Rochkind M, Pasternak S, Paz Y. Molecules 2014; 20: 88
    • 8l Nicewicz DA, Nguyen TM. ACS Catal. 2013; 4: 355
    • 8m Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 9a Luo J, Wei W.-T. Adv. Synth. Catal. 2018; 360: 2076
    • 9b Zhao Y, Xia W. Chem. Soc. Rev. 2018; 47: 2591
    • 9c Kärkäs MD. ACS Catal. 2017; 7: 4999
    • 9d Menigaux D, Belmont P, Brachet E. Eur. J. Org. Chem. 2017; 2008
    • 9e Taniguchi T. Synthesis 2017; 49: 3511
    • 9f Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
  • 10 Creutz SE, Lotito KJ, Fu GC, Peters JC. Science 2012; 338: 647
  • 11 Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
  • 12 Cecere G, König CM, Alleva JL, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 11521
  • 13 Allen LJ, Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2014; 136: 5607
  • 14 Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A. Angew. Chem. Int. Ed. 2014; 53: 502
    • 15a Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
    • 15b Margrey KA, Levens A, Nicewicz DA. Angew. Chem. Int. Ed. 2017; 56: 15644
    • 15c Margrey KA, McManus JB, Bonazzi S, Zecri F, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 11288
    • 16a Meyer AU, Berger AL, König B. Chem. Commun. 2016; 52: 10918
    • 16b Das S, Natarajan P, König B. Chem. Eur. J. 2017; 23: 18161
    • 16c Song C, Yi H, Dou B, Li Y, Singh AK, Lei A. Chem. Commun. 2017; 53: 3689
  • 17 Pandey G, Singh D, Laha R. Asian J. Org. Chem. 2017; 6: 469
    • 18a Samanta S, Ravi C, Rao SN, Joshi A, Adimurthy S. Org. Biomol. Chem. 2017; 15: 9590
    • 18b You G, Wang K, Wang X, Wang G, Sun J, Duan G, Xia C. Org. Lett. 2018; 20: 4005
  • 19 Zhang L, Liardet L, Luo J, Ren D, Grätzel M, Hu X. Nat. Catal. 2019; 2: 366
  • 20 Tong K, Liu X, Zhang Y, Yu S. Chem. Eur. J. 2016; 22: 15669
    • 21a Ito E, Fukushima T, Kawakami T, Murakami K, Itami K. Chem 2017; 2: 383
    • 21b Yamaguchi T, Yamaguchi E, Itoh A. Org. Lett. 2017; 19: 1282
  • 22 Zhao Y, Huang B, Yang C, Li B, Gou B, Xia W. ACS Catal. 2017; 7: 2446
  • 23 Xin J.-R, He Y.-H, Guan Z. Org. Chem. Front. 2018; 5: 1684
  • 24 Ruffoni A, Juliá F, Svejstrup TD, McMillan AJ, Douglas JJ, Leonori D. Nat. Chem. 2019; 11: 426
  • 25 Leow D. Org. Lett. 2014; 16: 5812
    • 26a Leung FK.-C, Cui J.-F, Hui T.-W, Kung KK.-Y, Wong M.-K. Asian J. Org. Chem. 2015; 4: 533
    • 26b Monga A, Pandey AP, Sharma A. Adv. Synth. Catal. 2019; 361: 3554
  • 27 Song W, Dong K, Li M. Org. Lett. 2020; 22: 371
  • 28 Kaur S, Kumar M, Bhalla V. Green Chem. 2016; 18: 5870
  • 29 Kudisch M, Lim C.-H, Thordarson P, Miyake GM. J. Am. Chem. Soc. 2019; 141: 19479
  • 30 Kim H, Kim T, Lee DG, Roh SW, Lee C. Chem. Commun. 2014; 50: 9273
    • 31a Qin Q, Yu S. Org. Lett. 2014; 16: 3504
    • 31b Zhang M, Duan Y, Li W, Xu P, Cheng J, Yu S, Zhu C. Org. Lett. 2016; 18: 5356
  • 32 Greulich TW, Daniliuc CG, Studer A. Org. Lett. 2015; 17: 254
  • 33 Brachet E, Ghosh T, Ghosh I, König B. Chem. Sci. 2015; 6: 987
  • 34 Hillenbrand J, Ham WS, Ritter T. Org. Lett. 2019; 21: 5363
  • 35 Zheng Y.-W, Chen B, Ye P, Feng K, Wang W, Meng Q.-Y, Wu L.-Z, Tung C.-H. J. Am. Chem. Soc. 2016; 138: 10080
    • 36a Niu L, Yi H, Wang S, Liu T, Liu J, Lei A. Nat. Commun. 2017; 8: 14226
    • 36b Chen H, Yi H, Tang Z, Bian C, Zhang H, Lei A. Adv. Synth. Catal. 2018; 360: 3220
    • 36c Yi H, Niu L, Song C, Li Y, Dou B, Singh AK, Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120
  • 37 Zhao F, Yang Q, Zhang J, Shi W, Hu H, Liang F, Wei W, Zhou S. Org. Lett. 2018; 20: 7753
    • 38a Yoo W.-J, Tsukamoto T, Kobayashi S. Org. Lett. 2015; 17: 3640
    • 38b Yoo W.-J, Tsukamoto T, Kobayashi S. Angew. Chem. Int. Ed. 2015; 54: 6587
  • 39 Engl PS, Häring AP, Berger F, Berger G, Pérez-Bitrián A, Ritter T. J. Am. Chem. Soc. 2019; 141: 13346
  • 40 Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science 2016; 351: 681
  • 41 Zhang L, Yi H, Wang J, Lei A. J. Org. Chem. 2017; 82: 10704
  • 42 Zhao W, Wurz RP, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
  • 43 Bosnidou AE, Muñiz K. Angew. Chem. Int. Ed. 2019; 58: 7485
  • 44 Chan C.-M, Xing Q, Chow Y.-C, Hung S.-F, Yu W.-Y. Org. Lett. 2019; 21: 8037
  • 45 Soni VK, Lee S, Kang J, Moon YK, Hwang HS, You Y, Cho EJ. ACS Catal. 2019; 9: 10454
  • 46 Angnes RA, Potnis C, Liang S, Correia CR. D, Hammond GB. J. Org. Chem. 2020; 85: 4153
  • 47 Miyazawa K, Koike T, Akita M. Chem. Eur. J. 2015; 21: 11677
  • 48 Qin Q, Ren D, Yu S. Org. Biomol. Chem. 2015; 13: 10295
    • 49a Musacchio AJ, Lainhart BC, Zhang X, Naguib SG, Sherwood TC, Knowles RR. Science 2017; 355: 727
    • 49b Miller DC, Ganley JM, Musacchio AJ, Sherwood TC, Ewing WR, Knowles RR. J. Am. Chem. Soc. 2019; 141: 16590
    • 50a Jiang H, Studer A. Angew. Chem. Int. Ed. 2018; 57: 10707
    • 50b Jiang H, Studer A. Chem. Eur. J. 2019; 25: 516
  • 51 Goliszewska K, Rybicka-Jasińska K, Szurmak J, Gryko D. J. Org. Chem. 2019; 84: 15834
  • 52 Guo X, Wenger OS. Angew. Chem. Int. Ed. 2018; 57: 2469
  • 53 Alam R, Molander GA. Org. Lett. 2018; 20: 2680
    • 54a Lang SB, Cartwright KC, Welter RS, Locascio TM, Tunge JA. Eur. J. Org. Chem. 2016; 3331
    • 54b Zhang M.-J, Schroeder GM, He Y.-H, Guan Z. RSC Adv. 2016; 6: 96693
  • 55 Mao R, Frey A, Balon J, Hu X. Nat. Catal. 2018; 1: 120
  • 56 Feng G, Wang X, Jin J. Eur. J. Org. Chem. 2019; 6728
  • 57 Nguyen VT, Nguyen VD, Haug GC, Vuong NT. H, Dang HT, Arman HD, Larionov O. Angew. Chem. Int. Ed. 2020; 59: 7921
  • 58 Kim JH, Ruffoni A, Al-Faiyz YS. S, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2020; 59: 8225
  • 59 Choi S, Chatterjee T, Choi WJ, You Y, Cho EJ. ACS Catal. 2015; 5: 4796
  • 60 Martínez C, Bosnidou AE, Allmendinger S, Muñiz K. Chem. Eur. J. 2016; 22: 9929
  • 61 Moon Y, Jang E, Choi S, Hong S. Org. Lett. 2018; 20: 240
    • 62a Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2015; 54: 4055
    • 62b Li G, He R, Liu Q, Wang Z, Liu Y, Wang Q. J. Org. Chem. 2019; 84: 8646
  • 63 Wang N, Gu Q.-S, Li Z.-L, Li Z, Guo Y.-L, Guo Z, Liu X.-Y. Angew. Chem. Int. Ed. 2018; 57: 14225
  • 64 An X.-D, Yu S. Org. Lett. 2015; 17: 2692
  • 65 Li Z, Song H, Guo R, Zuo M, Hou C, Sun S, He X, Sun Z, Chu W. Green Chem. 2019; 21: 3602
    • 66a Musacchio AJ, Nguyen LQ, Beard GH, Knowles RR. J. Am. Chem. Soc. 2014; 136: 12217
    • 66b Choi GJ, Knowles RR. J. Am. Chem. Soc. 2015; 137: 9226
    • 66c Miller DC, Choi GJ, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2015; 137: 13492
  • 67 Nguyen ST, Zhu Q, Knowles RR. ACS Catal. 2019; 9: 4502
    • 68a Hu X.-Q, Chen J.-R, Wei Q, Liu F.-L, Deng Q.-H, Beauchemin AM, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 126: 12359
    • 68b Hu X.-Q, Qi X, Chen J.-R, Zhao Q.-Q, Wei Q, Lan Y, Xiao W.-J. Nat. Commun. 2016; 7: 11188
    • 68c For a recent example by Chen, Xiao and co-workers, see: Zhao Q.-Q, Zhou X.-S, Xu S.-H, Wu Y.-L, Xiao W.-J, Chen J.-R. Org. Lett. 2020; 22: 2470
    • 69a Davies J, Booth SG, Essafi S, Dryfe RA. W, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
    • 69b Davies J, Svejstrup TD, Reina DF, Sheikh NS, Leonori D. J. Am. Chem. Soc. 2016; 138: 8092
  • 70 Becker MR, Richardson AD, Schindler CS. Nat. Commun. 2019; 10: 5095
  • 71 Zhang Y, Cao Y, Lu L, Zhang S, Bao W, Huang S, Rao Y. J. Org. Chem. 2019; 84: 7711
  • 72 Liang D, Tan L.-P, Xiao W.-J, Chen J.-R. Chem. Commun. 2020; 56: 3777
  • 73 Yang X, Zhu Y, Xie Z, Li Y, Zhang Y. Org. Lett. 2020; 22: 1638
    • 74a Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2015; 54: 8287
    • 74b Becker P, Duhamel T, Stein CJ, Reiher M, Muñiz K. Angew. Chem. Int. Ed. 2017; 56: 8004
    • 74c Becker P, Duhamel T, Martinez C, Muñiz K. Angew. Chem. Int. Ed. 2018; 57: 5166
  • 75 Xuan J, Feng Z.-J, Duan S.-W, Xiao W.-J. RSC Adv. 2012; 2: 4065
  • 76 Qin Q, Yu S. Org. Lett. 2015; 17: 1894
    • 77a Davies J, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 13361
    • 77b Jiang H, Studer A. Angew. Chem. Int. Ed. 2017; 56: 12273
  • 78 Chen J, Guo H.-M, Zhao Q.-Q, Chen J.-R, Xiao W.-J. Chem. Commun. 2018; 54: 6780
  • 79 Zhu Q, Graff DE, Knowles RR. J. Am. Chem. Soc. 2018; 140: 741
  • 80 Jing D, Lu C, Chen Z, Jin S, Xie L, Meng Z, Su Z, Zheng K. Angew. Chem. Int. Ed. 2019; 58: 14666
    • 81a Gulzar N, Klussmann M. Org. Biomol. Chem. 2013; 11: 4516
    • 81b Gulzar N, Jones KM, Konnerth H, Breugst M, Klussmann M. Chem. Eur. J. 2015; 21: 3367
    • 82a Pandey G, Laha R. Angew. Chem. Int. Ed. 2015; 54: 14875
    • 82b Pandey G, Laha R, Singh D. J. Org. Chem. 2016; 81: 7161
  • 83 Sagadevan A, Ragupathi A, Lin C.-C, Hwu JR, Hwang KC. Green Chem. 2015; 17: 1113
  • 84 Lanzi M, Merad J, Boyarskaya DV, Maestri G, Allain C, Masson G. Org. Lett. 2018; 20: 5247
  • 85 Soni VK, Hwang HS, Moon YK, Park S.-W, You Y, Cho EJ. J. Am. Chem. Soc. 2019; 141: 10538
  • 86 Ding R, Chen H, Xu Y.-L, Tang H.-T, Chen Y.-Y, Pan Y.-M. Adv. Synth. Catal. 2019; 361: 3656
  • 87 Shukla G, Alam T, Srivastava HK, Kumar R, Patel BK. Org. Lett. 2019; 21: 3543