RSS-Feed abonnieren
DOI: 10.1055/s-0040-1707128
Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies
Autor*innen
Startup funding was provided by the Virginia Commonwealth University and the Bill and Melinda Gates Foundation (The Medicines for All Institute, grant number OPP1176590).
Publikationsverlauf
Received: 22. März 2020
Accepted after revision: 05. Mai 2020
Publikationsdatum:
25. Mai 2020 (online)

Abstract
Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.
1 Introduction
2 Ni Catalysis
3 Cu Catalysis
4 Ru, Rh, and Ir Catalysis
4.1 Alkenes
4.2 1,3-Dienes
4.3 Allenes
4.4 Alkynes
4.5 Enynes
5 Fe, Co, and Mn Catalysis
6 Conclusion and Outlook
-
References
- 1a Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8258
- 1b Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
- 1c Richmond E, Moran J. Synthesis 2017; 50: 499
- 1d Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 2a Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
- 2b Staveness D, Bosque I, Stephenson CR. Acc. Chem. Res. 2016; 49: 2295
- 2c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 2d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 2e Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 2f Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
- 3a Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
- 3b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 3c Moeller KD. Chem. Rev. 2018; 118: 4817
- 3d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
- 3e Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
- 4a Perkins RJ, Pedro DJ, Hansen EC. Org. Lett. 2017; 19: 3755
- 4b Sengmany S, Vasseur S, Lajnef A, Gall EL, Leonel E. Eur. J. Org. Chem. 2016; 4865
- 4c Perkins RJ, Hughes AJ, Weix DJ, Hansen EC. Org. Process Res. Dev. 2019; 23: 1746
- 4d DeLano TJ, Reisman SE. ACS Catal. 2019; 9: 6751
- 5a Reppe W, Schweckendick WJ. Justus Liebigs Ann. Chem. 1948; 560: 104
- 5b Agenet N, Buisine O, Slowinski F, Gandon V, Aubert C, Malacria M. Org. React. 2007; 68: 1
- 6 Vol’pin ME, Dubovitskii VA, Nogina OV, Kursanov DN. Dokl. Akad. Nauk SSSR 1963; 151: 1100
- 7a Reichard HA, McLaughlin M, Chen MZ, Micalizio GC. Eur. J. Org. Chem. 2010; 391
- 7b Mao K, Fan G, Liu T, Li S, You X, Liu D. Beilstein J. Org. Chem. 2013; 9: 621
- 8a Kablaoui NM, Buchwald SL. J. Am. Chem. Soc. 1995; 117: 6785
- 8b Crowe WE, Rachita MJ. J. Am. Chem. Soc. 1995; 117: 6787
- 9a McMurry JE. Chem. Rev. 1989; 89: 1513
- 9b Fürstner A, Bogdanović B. Angew. Chem. Int. Ed. 1996; 35: 2442
- 10a McMurry JE, Fleming MP. J. Am. Chem. Soc. 1974; 96: 4708
- 10b Duan X.-F, Zeng J, Lu J.-W, Zhang Z.-B. J. Org. Chem. 2006; 71: 9873
- 11 Chatterjee A, Bennur TH, Joshi NN. J. Org. Chem. 2003; 68: 5668
- 12 Sato Y, Takimoto M, Hayashi K, Katsuhara T, Takagi K, Mori M. J. Am. Chem. Soc. 1994; 116: 9771
- 13a Oblinger E, Montgomery J. J. Am. Chem. Soc. 1997; 119: 9065
- 13b Tang X-Q, Montgomery J. J. Am. Chem. Soc. 1999; 121: 6098
- 14a Kimura M, Ezoe A, Shibata K, Tamaru Y. J. Am. Chem. Soc. 1998; 120: 4033
- 14b Kimura M, Fujimatsu H, Ezoe A, Shibata K, Shimizu M, Matsumoto S, Tamaru Y. Angew. Chem. Int. Ed. 1999; 38: 397
- 15 Huang W.-S, Chan J, Jamison TF. Org. Lett. 2000; 2: 4221
- 16a Yang Y, Zhu S.-F, Duan H.-F, Zhou C.-Y, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2007; 129: 2248
- 16b Sato Y, Hinata Y, Seki R, Oonishi Y, Saito N. Org. Lett. 2007; 9: 5597
- 17a Miller KM, Huang W.-S, Jamison TF. J. Am. Chem. Soc. 2003; 125: 3442
- 17b Colby EA, Jamison TF. J. Org. Chem. 2003; 68: 156
- 18a Standley EA, Tasker SZ, Jensen KL, Jamison TF. Acc. Chem. Res. 2015; 48: 1503
- 18b Jackson EP, Malik HA, Sormunen GJ, Baxter RD, Liu P, Wang H, Shareef A.-R, Montgomery J. Acc. Chem. Res. 2015; 48: 1736
- 18c Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
- 18d Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 19a Patel SJ, Jamison TF. Angew. Chem. Int. Ed. 2004; 43: 3941
- 19b Zhou C.-Y, Zhu S.-F, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2010; 132: 10955
- 20 Haynes MT. II, Liu P, Baxter RD, Nett AJ, Houk KN, Montgomery J. J. Am. Chem. Soc. 2014; 136: 17495
- 21a Ogoshi S, Arai T, Ohashi M, Kurosawa H. Chem. Commun. 2008; 1347
- 21b Ogoshi S, Oka M, Kurosawa H. J. Am. Chem. Soc. 2004; 126: 11802
- 21c Tamaki T, Nagata M, Ohashi M, Ogoshi S. Chem. Eur. J. 2009; 15: 10083
- 22 Mahandru GM, Montgomery J. J. Am. Chem. Soc. 2004; 126: 3698
- 23 Nakai K, Yoshida Y, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2014; 136: 7797
- 24 Yao W.-W, Li R, Li J.-F, Sun J, Ye M. Green Chem. 2019; 21: 2240
- 25a Cho HY, Morken JP. J. Am. Chem. Soc. 2008; 130: 16140
- 25b Cho HY, Yu Z, Morken JP. Org. Lett. 2011; 19: 5267
- 26 Kopfer A, Sam B, Brit B, Krische MJ. Chem. Sci. 2013; 4: 1876
- 27a Ng S.-S, Jamison TF. J. Am. Chem. Soc. 2005; 127: 14194
- 27b Ho C.-Y, Ng S.-S, Jamison TF. J. Am. Chem. Soc. 2006; 128: 5362
- 27c Ho C.-Y, Schleicher KD, Chan C.-W, Jamison TF. Synlett 2009; 2565
- 28 Sun S.-S, Borjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
- 29 Qian D, Hu X. Angew. Chem. Int. Ed. 2019; 58: 18519
- 30a Sardini SR, Lambright AL, Trammel GL, Omer HM, Liu P, Brown MK. J. Am. Chem. Soc. 2019; 141: 9391
- 30b Logan KM, Sardini SR, White SD, Brown MK. J. Am. Chem. Soc. 2018; 140: 159
- 30c Chen L.-A, Lear AR, Gao P, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 10956
- 30d Joung S, Bergmann AM, Brown MK. Chem. Sci. 2019; 10: 10944
- 31a Liu Z, Gao Y, Zeng T, Engle KM. Isr. J. Chem. 2020; 60: 219
- 31b Suginome M. Chem. Rec. 2010; 10: 348
- 31c Collins BS. L, Wilson CM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
- 31d Shimizu Y, Kanai M. Tetrahedron Lett. 2014; 55: 3727
- 31e Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 32a Green SA, Matos JL. M, Yagi A, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 12779
- 32b Shevick SL, Obradors C, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 12056
- 33 Green SA, Vasquez-Cespedes S, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 11317
- 34 Green SA, Huffman TR, McCourt RO, van der Puyl V, Shenvi RA. J. Am. Chem. Soc. 2019; 141: 7709
- 35 Lipshutz BH, Amorelli B, Unger JB. J. Am. Chem. Soc. 2008; 130: 14378
- 36a Deschamp J, Chuzel O, Hannedouche J, Riant O. Angew. Chem. Int. Ed. 2006; 45: 1292
- 36b Zhao D, Oisaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 14440
- 37 Yang Y, Perry IB, Lu G, Liu P, Buchwald SL. Science 2016; 353: 144
- 38a Tsai EY, Liu RY, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 2007
- 38b Liu RY, Zhou Y, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 2251
- 39 Liu RY, Yang Y, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 14077
- 40 Yang Y, Perry IB, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 9787
- 41 Bandar JS, Ascic E, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 5821
- 42a Li C, Liu RY, Jesikiewicz LT, Yang Y, Liu P, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 5062
- 42b Li C, Shin K, Liu RY, Buchwald SL. Angew. Chem. Int. Ed. 2019; 58: 17074
- 43 Li K, Shao X, Tseng L, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 598
- 44 Shao X, Li K, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 7083
- 45a Klake KR, Gargaro SL, Gentry SL, Elele SO, Sieber JD. Org. Lett. 2019; 21: 7992
- 45b Gargaro SL, Klake KR, Burns KL, Elele SO, Gentry SL, Sieber JD. Org. Lett. 2019; 21: 9753
- 46 Meng F, Haeffner F, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 11304
- 47 Yeung K, Ruscoe RE, Rae J, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 11912
- 48 Meng F, Jang H, Jung B, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 5046
- 49 Zhang S, del Pozo J, Romiti F, Mu Y, Torker S, Hoveyda AH. Science 2019; 364: 45
- 50 Li X, Meng F, Torker S, Shi Y, Hoveyda AH. Angew. Chem. Int. Ed. 2016; 55: 9997
- 51 Lee J, Torker S, Hoveyda AH. Angew. Chem. Int. Ed. 2017; 56: 821
- 52 Logan KM, Brown MK. Angew. Chem. Int. Ed. 2017; 56: 851
- 53a Park JK, Lackey HH, Ondrusek BA, McQuade DT. J. Am. Chem. Soc. 2011; 133: 2410
- 53b Park JK, Lackey HH, Rexford MD, Kovnir K, Shatruk M, McQuade DT. Org. Lett. 2010; 12: 5008
- 53c Park JK, Ondrusek BA, McQuade DT. Org. Lett. 2010; 14: 4790
- 54a Huang Y, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 6048
- 54b Smith KB, Logan KM, You W, Brown MK. Chem. Eur. J. 2014; 20: 12032
- 55 Bergmann AM, Dorn SM, Smith KB, Logan KM, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 1719
- 56 Logan KM, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2015; 54: 5228
- 57 Jia T, Cao P, Wang B, Lou Y, Yin X, Wang M, Liao J. J. Am. Chem. Soc. 2015; 137: 13760
- 58a Sardini SR, Brown MK. J. Am. Chem. Soc. 2017; 139: 9823
- 58b Smith KB, Huang Y, Brown MK. Angew. Chem. Int. Ed. 2018; 57: 6146
- 58c Smith KB, Brown MK. J. Am. Chem. Soc. 2017; 139: 7721
- 58d Bergmann AM, Sardini SR, Smith KB, Brown MK. Isr. J. Chem. 2020; 60: 394
- 59a Huang Y, Bergmann AM, Brown MK. Org. Biomol. Chem. 2019; 17: 5913
- 59b Zhou T, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
- 59c Semba K, Yoshizawa M, Ohtagaki Y, Nakao Y. Bull. Chem. Soc. Jpn. 2017; 90: 1340
- 59d Sesieur M, Bidal YD, Lazreg F, Nahra F, Cazin CS. J. ChemCatChem 2015; 7: 2108
- 60 Alfaro R, Parra A, Aleman J, Luis J, Ruano G, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
- 61a Yabushita K, Yuasa A, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 113
- 61b Takeda M, Yabushita K, Yasuda S, Ohmiya H. Chem. Commun. 2018; 54: 6776
- 61c Takeda M, Mitsui A, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 3664
- 62 Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
- 63 Cornell CN, Sigman MS. Inorg. Chem. 2007; 46: 1903
- 64a Noyori R, Kitamura M. Angew. Chem. Int. Ed. 1991; 30: 49
- 64b Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
- 64c Pu L, Yu H.-B. Chem. Rev. 2001; 101: 757
- 64d Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963
- 64e Celina G, Victor SM. Curr. Org. Chem. 2006; 10: 1849
- 64f Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
- 65a Revis A, Hilty TK. Tetrahedron Lett. 1987; 28: 4809
- 65b Matsuda I, Takahashi K, Sato S. Tetrahedron Lett. 1990; 31: 5331
- 66a Taylor SJ, Morken JP. J. Am. Chem. Soc. 1999; 121: 12202
- 66b Taylor SJ, Duffey MO, Morken JP. J. Am. Chem. Soc. 2000; 122: 4528
- 66c Zhao C.-X, Duffey MO, Taylor SJ, Morken JP. Org. Lett. 2001; 3: 1829
- 67a Bower JF, Kim IS, Patman RL, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 34
- 67b Sam B, Breit B, Krische MJ. Angew. Chem. Int. Ed. 2015; 54: 3267
- 67c Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: 5133
- 67d Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
- 67e Haydl AM, Breit B, Liang T, Krische MJ. Angew. Chem. Int. Ed. 2017; 56: 11312
- 67f Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
- 67g Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055
- 68 Schulz H. Appl. Catal., A 1999; 186: 3
- 69 Yamaguchi E, Mowat J, Luong T, Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 8428
- 70 Kumar AS, Ramesh P, Kumar GS, Swetha A, Nanubolu JB, Meshram HM. RSC Adv. 2016; 6: 1705
- 71 Xiao H, Wang G, Krische MJ. Angew. Chem. Int. Ed. 2016; 55: 16119
- 72 Bower JF, Patman RL, Krische MJ. Org. Lett. 2008; 10: 1033
- 73 Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6338
- 74 Omura S, Fukuyama T, Horiguchi J, Murakami Y, Ryu I. J. Am. Chem. Soc. 2008; 130: 14094
- 75 Zhu S, Lu X, Luo Y, Zhang W, Jiang H, Yan M, Zeng W. Org. Lett. 2013; 15: 1440
- 76 Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ. Science 2012; 336: 324
- 77 Nicklaus CM, Minnaard AJ, Feringa BL, de Vries JG. ChemSusChem 2013; 6: 1631
- 78 Li H.-S, Xiong Y, Zhang G. Adv. Synth. Catal. 2018; 360: 4246
- 79 Skucas E, Bower JF, Krische MJ. J. Am. Chem. Soc. 2007; 129: 12678
- 80 Bower JF, Skucas E, Patman RL, Krische MJ. J. Am. Chem. Soc. 2007; 129: 15134
- 81 Ngai M.-Y, Skucas E, Krische MJ. Org. Lett. 2008; 10: 2705
- 82a Skucas E, Zbieg JR, Krische MJ. J. Am. Chem. Soc. 2009; 131: 5054
- 82b Zbieg JR, McInturff EL, Krische MJ. Org. Lett. 2010; 12: 2514
- 83 Sam B, Montgomery TP, Krische MJ. Org. Lett. 2013; 15: 3790
- 84a Oda S, Sam B, Krische MJ. Angew. Chem. Int. Ed. 2015; 54: 8525
- 84b Tran DN, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 8181
- 85 Kim IS, Krische MJ. Org. Lett. 2008; 10: 513
- 86 Sam B, Luong T, Krische MJ. Angew. Chem. Int. Ed. 2015; 54: 5465
- 87 Garza VJ, Krische MJ. J. Am. Chem. Soc. 2016; 138: 3655
- 88 Kim SW, Meyer CC, Mai BK, Liu P, Krische MJ. ACS Catal. 2019; 9: 9158
- 89 Obora Y, Hatanaka S, Ishii Y. Org. Lett. 2009; 11: 3510
- 90 Park BY, Nguyen KD, Chaulagain MR, Komanduri V, Krische MJ. J. Am. Chem. Soc. 2014; 136: 11902
- 91 Liang T, Nguyen KD, Zhang W, Krische MJ. J. Am. Chem. Soc. 2015; 137: 3161
- 92a Liang T, Zhang W, Chen T.-Y, Nguyen KD, Krische MJ. J. Am. Chem. Soc. 2015; 137: 13066
- 92b Liang T, Zhang W, Krische MJ. J. Am. Chem. Soc. 2015; 137: 16024
- 93 Zhang W, Chen W, Xiao H, Krische MJ. Org. Lett. 2017; 19: 4876
- 94 Kong J.-R, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2006; 128: 718
- 95 Hong Y.-T, Cho C.-W, Skucas E, Krische MJ. Org. Lett. 2007; 9: 3745
- 96 Komanduri V, Krische MJ. J. Am. Chem. Soc. 2006; 128: 16448
- 97 Kong J.-R, Cho C.-W, Krische MJ. J. Am. Chem. Soc. 2005; 127: 11269
- 98 Masutomi K, Noguchi K, Tanaka K. J. Am. Chem. Soc. 2014; 136: 7627
- 99a Patman RL, Williams VM, Bower JF, Krische MJ. Angew. Chem. Int. Ed. 2008; 47: 5220
- 99b Geary LM, Leung JC, Krische MJ. Chem. Eur. J. 2012; 18: 16823
- 99c Nguyen KD, Herkommer D, Krische MJ. J. Am. Chem. Soc. 2016; 138: 5238
- 100 Geary LM, Woo SK, Leung JC, Krische MJ. Angew. Chem. Int. Ed. 2012; 51: 2972
- 102a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 102b Green SA, Crossley SW. M, Matos JL. M, Vásquez-Céspedes S, Shevick SL, Shenvi RA. Acc. Chem. Res. 2018; 51: 2628
- 102c Lo JC, Kim D, Pan C.-M, Edwards JT, Yabe Y, Gui J, Qin T, Gutiérrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
- 103a Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
- 103b Gaspar B, Carreira EM. J. Am. Chem. Soc. 2009; 131: 13214
- 103c Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 112
- 103d Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
- 104a Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
- 104b Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
- 105a Waser J, Carreira EM. J. Am. Chem. Soc. 2004; 126: 5676
- 105b Waser J, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 4099
- 105c Waser J, Nambu H, Carreira EM. J. Am. Chem. Soc. 2005; 127: 8294
- 105d Waser J, González-Gómez JC, Nambu H, Huber P, Carreira EM. Org. Lett. 2005; 7: 4249
- 105e Waser J, Gaspar B, Nambu H, Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
- 105f Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 5758
- 106 Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 1071
- 107a Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
- 107b Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
- 108 Crossley SW. M, Barabe F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
- 109 Kim D, Rahaman SM. W, Mercado BQ, Poli R, Holland PL. J. Am. Chem. Soc. 2019; 141: 7473
- 110 Obradors C, Martinez RM, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 4962
- 111 Zheng J, Wang D, Cui S. Org. Lett. 2015; 17: 4572
- 112 Shen Y, Qi J, Mao Z, Cui S. Org. Lett. 2016; 18: 2722
- 113 Gui Q, Hu L, Chen X, Liu J, Tan Z. Asian J. Org. Chem. 2015; 4: 870
- 114a Wang C.-C, Lin P.-S, Cheng C.-H. J. Am. Chem. Soc. 2002; 124: 9696
- 114b Chang H.-T, Jayanth TT, Wang C.-C, Cheng C.-H. J. Am. Chem. Soc. 2007; 129: 12032
- 115 Crossley SW. M, Martinez RM, Guevara-Zuluaga S, Shenvi RA. Org. Lett. 2016; 18: 2620
- 116 Dao HT, Li C, Michaudel Q, Maxwell BD, Baran PS. J. Am. Chem. Soc. 2015; 137: 8046
- 117 Ma X, Dang H, Rose JA, Rablen P, Herzon SB. J. Am. Chem. Soc. 2017; 139: 5998
- 118 Liang B, Wang Q, Liu Z.-Q. Org. Lett. 2017; 19: 6463
- 119 Saladrigas M, Bosch C, Saborit GV, Bonjoch J, Bradshaw B. Angew. Chem. Int. Ed. 2018; 57: 182
- 120 Saladrigas M, Loren G, Bonjoch J, Bradshaw B. ACS Catal. 2018; 8: 11699
- 121 Saladrigas M, Bonjoch J, Bradshaw B. Org. Lett. 2020; 22: 684
- 122 Matos JL. M, Vásquez-Céspedes S, Gu J, Oguma T, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 16976
- 123 Wang Y.-Y, Bode JW. J. Am. Chem. Soc. 2019; 141: 9739
- 124 Tardieu D, Desnoyers M, Laye C, Hazelard D, Kern N, Compain P. Org. Lett. 2019; 21: 7262
- 125a Xia X.-F, He W, Zhang G.-W, Wang D. Org. Chem. Front. 2019; 6: 342
- 125b Qi J, Tang H, Chen C, Cui S, Xu G. Org. Chem. Front. 2019; 6: 2760
- 126 Turner OJ, Hirst DJ, Murphy JA. Chem. Eur. J. 2020; 26: 3026
- 127 Larionov VA, Stoletova NV, Kovalev VI, Smol’yakov AF, Savel’yeva T. yF, Maleev VI. Org. Chem. Front. 2019; 6: 1094
- 128 Date S, Hamasaki K, Sunagawa K, Koyama H, Sebe C, Hiroya K, Shigehisa H. ACS Catal. 2020; 10: 2039
Reviews:
Reviews:
Reviews:
Reviews:
Reviews:
Reviews:
Using imines:
For reviews on 1,2-carboboration reactions, see: