Synthesis
DOI: 10.1055/s-0040-1707128
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies

Toolika Agrawal
,
Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284-3028, USA   Email: jdsieber@vcu.edu
› Author Affiliations
Startup funding was provided by the Virginia Commonwealth University and the Bill and Melinda Gates Foundation (The Medicines for All Institute, grant number OPP1176590).
Further Information

Publication History

Received: 22 March 2020

Accepted after revision: 05 May 2020

Publication Date:
25 May 2020 (online)


Abstract

Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.

1 Introduction

2 Ni Catalysis

3 Cu Catalysis

4 Ru, Rh, and Ir Catalysis

4.1 Alkenes

4.2 1,3-Dienes

4.3 Allenes

4.4 Alkynes

4.5 Enynes

5 Fe, Co, and Mn Catalysis

6 Conclusion and Outlook

 
  • References


    • Reviews:
    • 1a Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8258
    • 1b Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
    • 1c Richmond E, Moran J. Synthesis 2017; 50: 499
    • 1d Weix DJ. Acc. Chem. Res. 2015; 48: 1767

      Reviews:
    • 2a Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
    • 2b Staveness D, Bosque I, Stephenson CR. Acc. Chem. Res. 2016; 49: 2295
    • 2c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 2d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 2e Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 2f Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563

      Reviews:
    • 3a Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 3b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 3c Moeller KD. Chem. Rev. 2018; 118: 4817
    • 3d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 3e Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
    • 4a Perkins RJ, Pedro DJ, Hansen EC. Org. Lett. 2017; 19: 3755
    • 4b Sengmany S, Vasseur S, Lajnef A, Gall EL, Leonel E. Eur. J. Org. Chem. 2016; 4865
    • 4c Perkins RJ, Hughes AJ, Weix DJ, Hansen EC. Org. Process Res. Dev. 2019; 23: 1746
    • 4d DeLano TJ, Reisman SE. ACS Catal. 2019; 9: 6751
    • 5a Reppe W, Schweckendick WJ. Justus Liebigs Ann. Chem. 1948; 560: 104
    • 5b Agenet N, Buisine O, Slowinski F, Gandon V, Aubert C, Malacria M. Org. React. 2007; 68: 1
  • 6 Vol’pin ME, Dubovitskii VA, Nogina OV, Kursanov DN. Dokl. Akad. Nauk SSSR 1963; 151: 1100

    • Reviews:
    • 7a Reichard HA, McLaughlin M, Chen MZ, Micalizio GC. Eur. J. Org. Chem. 2010; 391
    • 7b Mao K, Fan G, Liu T, Li S, You X, Liu D. Beilstein J. Org. Chem. 2013; 9: 621
    • 8a Kablaoui NM, Buchwald SL. J. Am. Chem. Soc. 1995; 117: 6785
    • 8b Crowe WE, Rachita MJ. J. Am. Chem. Soc. 1995; 117: 6787

      Reviews:
    • 9a McMurry JE. Chem. Rev. 1989; 89: 1513
    • 9b Fürstner A, Bogdanović B. Angew. Chem. Int. Ed. 1996; 35: 2442
    • 10a McMurry JE, Fleming MP. J. Am. Chem. Soc. 1974; 96: 4708
    • 10b Duan X.-F, Zeng J, Lu J.-W, Zhang Z.-B. J. Org. Chem. 2006; 71: 9873
  • 11 Chatterjee A, Bennur TH, Joshi NN. J. Org. Chem. 2003; 68: 5668
  • 12 Sato Y, Takimoto M, Hayashi K, Katsuhara T, Takagi K, Mori M. J. Am. Chem. Soc. 1994; 116: 9771
    • 13a Oblinger E, Montgomery J. J. Am. Chem. Soc. 1997; 119: 9065
    • 13b Tang X-Q, Montgomery J. J. Am. Chem. Soc. 1999; 121: 6098
    • 14a Kimura M, Ezoe A, Shibata K, Tamaru Y. J. Am. Chem. Soc. 1998; 120: 4033
    • 14b Kimura M, Fujimatsu H, Ezoe A, Shibata K, Shimizu M, Matsumoto S, Tamaru Y. Angew. Chem. Int. Ed. 1999; 38: 397
  • 15 Huang W.-S, Chan J, Jamison TF. Org. Lett. 2000; 2: 4221
    • 16a Yang Y, Zhu S.-F, Duan H.-F, Zhou C.-Y, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2007; 129: 2248
    • 16b Sato Y, Hinata Y, Seki R, Oonishi Y, Saito N. Org. Lett. 2007; 9: 5597
    • 17a Miller KM, Huang W.-S, Jamison TF. J. Am. Chem. Soc. 2003; 125: 3442
    • 17b Colby EA, Jamison TF. J. Org. Chem. 2003; 68: 156

      Reviews:
    • 18a Standley EA, Tasker SZ, Jensen KL, Jamison TF. Acc. Chem. Res. 2015; 48: 1503
    • 18b Jackson EP, Malik HA, Sormunen GJ, Baxter RD, Liu P, Wang H, Shareef A.-R, Montgomery J. Acc. Chem. Res. 2015; 48: 1736
    • 18c Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
    • 18d Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299

      Using imines:
    • 19a Patel SJ, Jamison TF. Angew. Chem. Int. Ed. 2004; 43: 3941
    • 19b Zhou C.-Y, Zhu S.-F, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2010; 132: 10955
  • 20 Haynes MT. II, Liu P, Baxter RD, Nett AJ, Houk KN, Montgomery J. J. Am. Chem. Soc. 2014; 136: 17495
    • 21a Ogoshi S, Arai T, Ohashi M, Kurosawa H. Chem. Commun. 2008; 1347
    • 21b Ogoshi S, Oka M, Kurosawa H. J. Am. Chem. Soc. 2004; 126: 11802
    • 21c Tamaki T, Nagata M, Ohashi M, Ogoshi S. Chem. Eur. J. 2009; 15: 10083
  • 22 Mahandru GM, Montgomery J. J. Am. Chem. Soc. 2004; 126: 3698
  • 23 Nakai K, Yoshida Y, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2014; 136: 7797
  • 24 Yao W.-W, Li R, Li J.-F, Sun J, Ye M. Green Chem. 2019; 21: 2240
    • 25a Cho HY, Morken JP. J. Am. Chem. Soc. 2008; 130: 16140
    • 25b Cho HY, Yu Z, Morken JP. Org. Lett. 2011; 19: 5267
  • 26 Kopfer A, Sam B, Brit B, Krische MJ. Chem. Sci. 2013; 4: 1876
    • 27a Ng S.-S, Jamison TF. J. Am. Chem. Soc. 2005; 127: 14194
    • 27b Ho C.-Y, Ng S.-S, Jamison TF. J. Am. Chem. Soc. 2006; 128: 5362
    • 27c Ho C.-Y, Schleicher KD, Chan C.-W, Jamison TF. Synlett 2009; 2565
  • 28 Sun S.-S, Borjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
  • 29 Qian D, Hu X. Angew. Chem. Int. Ed. 2019; 58: 18519
    • 30a Sardini SR, Lambright AL, Trammel GL, Omer HM, Liu P, Brown MK. J. Am. Chem. Soc. 2019; 141: 9391
    • 30b Logan KM, Sardini SR, White SD, Brown MK. J. Am. Chem. Soc. 2018; 140: 159
    • 30c Chen L.-A, Lear AR, Gao P, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 10956
    • 30d Joung S, Bergmann AM, Brown MK. Chem. Sci. 2019; 10: 10944

      For reviews on 1,2-carboboration reactions, see:
    • 31a Liu Z, Gao Y, Zeng T, Engle KM. Isr. J. Chem. 2020; 60: 219
    • 31b Suginome M. Chem. Rec. 2010; 10: 348
    • 31c Collins BS. L, Wilson CM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
    • 31d Shimizu Y, Kanai M. Tetrahedron Lett. 2014; 55: 3727
    • 31e Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
    • 32a Green SA, Matos JL. M, Yagi A, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 12779
    • 32b Shevick SL, Obradors C, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 12056
  • 33 Green SA, Vasquez-Cespedes S, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 11317
  • 34 Green SA, Huffman TR, McCourt RO, van der Puyl V, Shenvi RA. J. Am. Chem. Soc. 2019; 141: 7709
  • 35 Lipshutz BH, Amorelli B, Unger JB. J. Am. Chem. Soc. 2008; 130: 14378
    • 36a Deschamp J, Chuzel O, Hannedouche J, Riant O. Angew. Chem. Int. Ed. 2006; 45: 1292
    • 36b Zhao D, Oisaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 14440
  • 37 Yang Y, Perry IB, Lu G, Liu P, Buchwald SL. Science 2016; 353: 144
    • 38a Tsai EY, Liu RY, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 2007
    • 38b Liu RY, Zhou Y, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 2251
  • 39 Liu RY, Yang Y, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 14077
  • 40 Yang Y, Perry IB, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 9787
  • 41 Bandar JS, Ascic E, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 5821
    • 42a Li C, Liu RY, Jesikiewicz LT, Yang Y, Liu P, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 5062
    • 42b Li C, Shin K, Liu RY, Buchwald SL. Angew. Chem. Int. Ed. 2019; 58: 17074
  • 43 Li K, Shao X, Tseng L, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 598
  • 44 Shao X, Li K, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 7083
    • 45a Klake KR, Gargaro SL, Gentry SL, Elele SO, Sieber JD. Org. Lett. 2019; 21: 7992
    • 45b Gargaro SL, Klake KR, Burns KL, Elele SO, Gentry SL, Sieber JD. Org. Lett. 2019; 21: 9753
  • 46 Meng F, Haeffner F, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 11304
  • 47 Yeung K, Ruscoe RE, Rae J, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 11912
  • 48 Meng F, Jang H, Jung B, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 5046
  • 49 Zhang S, del Pozo J, Romiti F, Mu Y, Torker S, Hoveyda AH. Science 2019; 364: 45
  • 50 Li X, Meng F, Torker S, Shi Y, Hoveyda AH. Angew. Chem. Int. Ed. 2016; 55: 9997
  • 51 Lee J, Torker S, Hoveyda AH. Angew. Chem. Int. Ed. 2017; 56: 821
  • 52 Logan KM, Brown MK. Angew. Chem. Int. Ed. 2017; 56: 851
    • 53a Park JK, Lackey HH, Ondrusek BA, McQuade DT. J. Am. Chem. Soc. 2011; 133: 2410
    • 53b Park JK, Lackey HH, Rexford MD, Kovnir K, Shatruk M, McQuade DT. Org. Lett. 2010; 12: 5008
    • 53c Park JK, Ondrusek BA, McQuade DT. Org. Lett. 2010; 14: 4790
    • 54a Huang Y, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 6048
    • 54b Smith KB, Logan KM, You W, Brown MK. Chem. Eur. J. 2014; 20: 12032
  • 55 Bergmann AM, Dorn SM, Smith KB, Logan KM, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 1719
  • 56 Logan KM, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2015; 54: 5228
  • 57 Jia T, Cao P, Wang B, Lou Y, Yin X, Wang M, Liao J. J. Am. Chem. Soc. 2015; 137: 13760
    • 58a Sardini SR, Brown MK. J. Am. Chem. Soc. 2017; 139: 9823
    • 58b Smith KB, Huang Y, Brown MK. Angew. Chem. Int. Ed. 2018; 57: 6146
    • 58c Smith KB, Brown MK. J. Am. Chem. Soc. 2017; 139: 7721
    • 58d Bergmann AM, Sardini SR, Smith KB, Brown MK. Isr. J. Chem. 2020; 60: 394
    • 59a Huang Y, Bergmann AM, Brown MK. Org. Biomol. Chem. 2019; 17: 5913
    • 59b Zhou T, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
    • 59c Semba K, Yoshizawa M, Ohtagaki Y, Nakao Y. Bull. Chem. Soc. Jpn. 2017; 90: 1340
    • 59d Sesieur M, Bidal YD, Lazreg F, Nahra F, Cazin CS. J. ChemCatChem 2015; 7: 2108
  • 60 Alfaro R, Parra A, Aleman J, Luis J, Ruano G, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
    • 61a Yabushita K, Yuasa A, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 113
    • 61b Takeda M, Yabushita K, Yasuda S, Ohmiya H. Chem. Commun. 2018; 54: 6776
    • 61c Takeda M, Mitsui A, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 3664
  • 62 Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
  • 63 Cornell CN, Sigman MS. Inorg. Chem. 2007; 46: 1903
    • 64a Noyori R, Kitamura M. Angew. Chem. Int. Ed. 1991; 30: 49
    • 64b Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
    • 64c Pu L, Yu H.-B. Chem. Rev. 2001; 101: 757
    • 64d Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963
    • 64e Celina G, Victor SM. Curr. Org. Chem. 2006; 10: 1849
    • 64f Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
    • 65a Revis A, Hilty TK. Tetrahedron Lett. 1987; 28: 4809
    • 65b Matsuda I, Takahashi K, Sato S. Tetrahedron Lett. 1990; 31: 5331
    • 66a Taylor SJ, Morken JP. J. Am. Chem. Soc. 1999; 121: 12202
    • 66b Taylor SJ, Duffey MO, Morken JP. J. Am. Chem. Soc. 2000; 122: 4528
    • 66c Zhao C.-X, Duffey MO, Taylor SJ, Morken JP. Org. Lett. 2001; 3: 1829
    • 67a Bower JF, Kim IS, Patman RL, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 34
    • 67b Sam B, Breit B, Krische MJ. Angew. Chem. Int. Ed. 2015; 54: 3267
    • 67c Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: 5133
    • 67d Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
    • 67e Haydl AM, Breit B, Liang T, Krische MJ. Angew. Chem. Int. Ed. 2017; 56: 11312
    • 67f Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
    • 67g Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055
  • 68 Schulz H. Appl. Catal., A 1999; 186: 3
  • 69 Yamaguchi E, Mowat J, Luong T, Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 8428
  • 70 Kumar AS, Ramesh P, Kumar GS, Swetha A, Nanubolu JB, Meshram HM. RSC Adv. 2016; 6: 1705
  • 71 Xiao H, Wang G, Krische MJ. Angew. Chem. Int. Ed. 2016; 55: 16119
  • 72 Bower JF, Patman RL, Krische MJ. Org. Lett. 2008; 10: 1033
  • 73 Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6338
  • 74 Omura S, Fukuyama T, Horiguchi J, Murakami Y, Ryu I. J. Am. Chem. Soc. 2008; 130: 14094
  • 75 Zhu S, Lu X, Luo Y, Zhang W, Jiang H, Yan M, Zeng W. Org. Lett. 2013; 15: 1440
  • 76 Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ. Science 2012; 336: 324
  • 77 Nicklaus CM, Minnaard AJ, Feringa BL, de Vries JG. ChemSusChem 2013; 6: 1631
  • 78 Li H.-S, Xiong Y, Zhang G. Adv. Synth. Catal. 2018; 360: 4246
  • 79 Skucas E, Bower JF, Krische MJ. J. Am. Chem. Soc. 2007; 129: 12678
  • 80 Bower JF, Skucas E, Patman RL, Krische MJ. J. Am. Chem. Soc. 2007; 129: 15134
  • 81 Ngai M.-Y, Skucas E, Krische MJ. Org. Lett. 2008; 10: 2705
    • 82a Skucas E, Zbieg JR, Krische MJ. J. Am. Chem. Soc. 2009; 131: 5054
    • 82b Zbieg JR, McInturff EL, Krische MJ. Org. Lett. 2010; 12: 2514
  • 83 Sam B, Montgomery TP, Krische MJ. Org. Lett. 2013; 15: 3790
    • 84a Oda S, Sam B, Krische MJ. Angew. Chem. Int. Ed. 2015; 54: 8525
    • 84b Tran DN, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 8181
  • 85 Kim IS, Krische MJ. Org. Lett. 2008; 10: 513
  • 86 Sam B, Luong T, Krische MJ. Angew. Chem. Int. Ed. 2015; 54: 5465
  • 87 Garza VJ, Krische MJ. J. Am. Chem. Soc. 2016; 138: 3655
  • 88 Kim SW, Meyer CC, Mai BK, Liu P, Krische MJ. ACS Catal. 2019; 9: 9158
  • 89 Obora Y, Hatanaka S, Ishii Y. Org. Lett. 2009; 11: 3510
  • 90 Park BY, Nguyen KD, Chaulagain MR, Komanduri V, Krische MJ. J. Am. Chem. Soc. 2014; 136: 11902
  • 91 Liang T, Nguyen KD, Zhang W, Krische MJ. J. Am. Chem. Soc. 2015; 137: 3161
    • 92a Liang T, Zhang W, Chen T.-Y, Nguyen KD, Krische MJ. J. Am. Chem. Soc. 2015; 137: 13066
    • 92b Liang T, Zhang W, Krische MJ. J. Am. Chem. Soc. 2015; 137: 16024
  • 93 Zhang W, Chen W, Xiao H, Krische MJ. Org. Lett. 2017; 19: 4876
  • 94 Kong J.-R, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2006; 128: 718
  • 95 Hong Y.-T, Cho C.-W, Skucas E, Krische MJ. Org. Lett. 2007; 9: 3745
  • 96 Komanduri V, Krische MJ. J. Am. Chem. Soc. 2006; 128: 16448
  • 97 Kong J.-R, Cho C.-W, Krische MJ. J. Am. Chem. Soc. 2005; 127: 11269
  • 98 Masutomi K, Noguchi K, Tanaka K. J. Am. Chem. Soc. 2014; 136: 7627
    • 99a Patman RL, Williams VM, Bower JF, Krische MJ. Angew. Chem. Int. Ed. 2008; 47: 5220
    • 99b Geary LM, Leung JC, Krische MJ. Chem. Eur. J. 2012; 18: 16823
    • 99c Nguyen KD, Herkommer D, Krische MJ. J. Am. Chem. Soc. 2016; 138: 5238
  • 100 Geary LM, Woo SK, Leung JC, Krische MJ. Angew. Chem. Int. Ed. 2012; 51: 2972
    • 101a Giese B, Meister J. Chem. Ber. 1977; 110: 2588
    • 101b Ramaiah M. Tetrahedron 1987; 43: 3541
    • 102a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 102b Green SA, Crossley SW. M, Matos JL. M, Vásquez-Céspedes S, Shevick SL, Shenvi RA. Acc. Chem. Res. 2018; 51: 2628
    • 102c Lo JC, Kim D, Pan C.-M, Edwards JT, Yabe Y, Gui J, Qin T, Gutiérrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
    • 103a Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
    • 103b Gaspar B, Carreira EM. J. Am. Chem. Soc. 2009; 131: 13214
    • 103c Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 112
    • 103d Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
    • 104a Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
    • 104b Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
    • 105a Waser J, Carreira EM. J. Am. Chem. Soc. 2004; 126: 5676
    • 105b Waser J, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 4099
    • 105c Waser J, Nambu H, Carreira EM. J. Am. Chem. Soc. 2005; 127: 8294
    • 105d Waser J, González-Gómez JC, Nambu H, Huber P, Carreira EM. Org. Lett. 2005; 7: 4249
    • 105e Waser J, Gaspar B, Nambu H, Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
    • 105f Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 5758
  • 106 Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 1071
    • 107a Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
    • 107b Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
  • 108 Crossley SW. M, Barabe F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
  • 109 Kim D, Rahaman SM. W, Mercado BQ, Poli R, Holland PL. J. Am. Chem. Soc. 2019; 141: 7473
  • 110 Obradors C, Martinez RM, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 4962
  • 111 Zheng J, Wang D, Cui S. Org. Lett. 2015; 17: 4572
  • 112 Shen Y, Qi J, Mao Z, Cui S. Org. Lett. 2016; 18: 2722
  • 113 Gui Q, Hu L, Chen X, Liu J, Tan Z. Asian J. Org. Chem. 2015; 4: 870
    • 114a Wang C.-C, Lin P.-S, Cheng C.-H. J. Am. Chem. Soc. 2002; 124: 9696
    • 114b Chang H.-T, Jayanth TT, Wang C.-C, Cheng C.-H. J. Am. Chem. Soc. 2007; 129: 12032
  • 115 Crossley SW. M, Martinez RM, Guevara-Zuluaga S, Shenvi RA. Org. Lett. 2016; 18: 2620
  • 116 Dao HT, Li C, Michaudel Q, Maxwell BD, Baran PS. J. Am. Chem. Soc. 2015; 137: 8046
  • 117 Ma X, Dang H, Rose JA, Rablen P, Herzon SB. J. Am. Chem. Soc. 2017; 139: 5998
  • 118 Liang B, Wang Q, Liu Z.-Q. Org. Lett. 2017; 19: 6463
  • 119 Saladrigas M, Bosch C, Saborit GV, Bonjoch J, Bradshaw B. Angew. Chem. Int. Ed. 2018; 57: 182
  • 120 Saladrigas M, Loren G, Bonjoch J, Bradshaw B. ACS Catal. 2018; 8: 11699
  • 121 Saladrigas M, Bonjoch J, Bradshaw B. Org. Lett. 2020; 22: 684
  • 122 Matos JL. M, Vásquez-Céspedes S, Gu J, Oguma T, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 16976
  • 123 Wang Y.-Y, Bode JW. J. Am. Chem. Soc. 2019; 141: 9739
  • 124 Tardieu D, Desnoyers M, Laye C, Hazelard D, Kern N, Compain P. Org. Lett. 2019; 21: 7262
    • 125a Xia X.-F, He W, Zhang G.-W, Wang D. Org. Chem. Front. 2019; 6: 342
    • 125b Qi J, Tang H, Chen C, Cui S, Xu G. Org. Chem. Front. 2019; 6: 2760
  • 126 Turner OJ, Hirst DJ, Murphy JA. Chem. Eur. J. 2020; 26: 3026
  • 127 Larionov VA, Stoletova NV, Kovalev VI, Smol’yakov AF, Savel’yeva T. yF, Maleev VI. Org. Chem. Front. 2019; 6: 1094
  • 128 Date S, Hamasaki K, Sunagawa K, Koyama H, Sebe C, Hiroya K, Shigehisa H. ACS Catal. 2020; 10: 2039