Synthesis 2020; 52(16): 2299-2310
DOI: 10.1055/s-0040-1707122
short review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Oxazoline and Oxazole Derivatives by Hypervalent-Iodine-Mediated Oxidative Cycloaddition Reactions

a   Department of Chemistry and Biochemistry, University of Minnesota Duluth, Minnesota 55812, USA   Email: ayoshimu@d.umn.edu   Email: vzhdanki@d.umn.edu
,
Akio Saito
b   Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-23-16 Naka-cho, Koganei, Tokyo 184-8588, Japan   Email: akio-sai@cc.tuat.ac.jp
,
c   Research School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
,
a   Department of Chemistry and Biochemistry, University of Minnesota Duluth, Minnesota 55812, USA   Email: ayoshimu@d.umn.edu   Email: vzhdanki@d.umn.edu
› Author Affiliations
This work was supported by a research grant from the Russian Science Foundation (RSF-16-13-10081-P), the Tomsk Polytechnic University Competitiveness Enhancement Program and the National Science Foundation (CHE-1759798). A.S. is grateful to the Japan Society for the Promotion of Science (JSPS), Fund for the Promotion of Joint International Research (Grant No. 16KK0199).
Further Information

Publication History

Received: 08 March 2020

Accepted after revision: 15 April 2020

Publication Date:
18 May 2020 (online)


Akira Yoshimura and Akio Saito contributed equally to this work.

Abstract

Organohypervalent iodine reagents are widely used for the preparation of various oxazolines, oxazoles, isoxazolines, and isoxazoles. In the formation of these heterocyclic compounds, hypervalent iodine species can serve as the activating reagents for various substrates, as well as the heteroatom donor reagents. In recent research, both chemical and electrochemical approaches toward generation of hypervalent iodine species have been utilized. The in situ generated active species can react with appropriate substrates to give the corresponding heterocyclic products. In this short review, we summarize the hypervalent-iodine­-mediated preparation of oxazolines, oxazoles, isoxazolines, and isoxazoles starting from various substrates.

1 Introduction

2 Synthesis of Oxazolines

3 Synthesis of Oxazoles

4 Synthesis of Isoxazolines

5 Synthesis of Isoxazoles

6 Conclusion

 
  • References

  • 1 Vargas DF, Larghi EL, Kaufman TS. Nat. Prod. Rep. 2019; 36: 354
  • 2 Miao Y.-h, Hu Y.-h, Yang J, Liu T, Sun J, Wang X.-j. RSC Adv. 2019; 9: 27510
  • 3 Madawali IM, Gaviraj EN, Kalyane NV, Shivakumar B. Am. J. PharmTech Res. 2019; 9: 256
  • 4 Soor HS, Appavoo SD, Yudin AK. Bioorg. Med. Chem. 2018; 26: 2774
  • 5 Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
  • 6 Khan I, Ibrar A, Abbas N, Saeed A. Eur. J. Med. Chem. 2014; 76: 193
  • 7 Singh GS, Mmatli EE. Eur. J. Med. Chem. 2011; 46: 5237
  • 8 Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
  • 9 Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
  • 10 Ibrar A, Khan I, Abbas N, Farooq U, Khan A. RSC Adv. 2016; 6: 93016
  • 11 Pellissier H. Tetrahedron 2007; 63: 3235
  • 12 Nair V, Suja TD. Tetrahedron 2007; 63: 12247
  • 13 Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
  • 14 Gant TG, Meyers AI. Tetrahedron 1994; 50: 2297
  • 15 Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
  • 16 Yeh VS. C. Tetrahedron 2004; 60: 11995
  • 17 Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
  • 18 Debnath P. Curr. Org. Chem. 2019; 23: 2402
  • 19 Wu Y.-J. Prog. Heterocycl. Chem. 2017; 29: 315
  • 20 Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
  • 21 Sridharan V, Suryavanshi PA, Menendez JC. Chem. Rev. 2011; 111: 7157
  • 22 Katritzky A, Ramsden CA, Joule JA, Zhdankin VV. Handbook of Heterocyclic Chemistry, 3rd ed. Elsevier; Amsterdam: 2010
  • 23 de Andrade VS. C, de Mattos MC. S. Synthesis 2019; 51: 1841
  • 24 Maiuolo L, De Nino A. Targets Heterocycl. Syst. 2015; 19: 299
  • 25 Rane D, Sibi M. Curr. Org. Synth. 2011; 8: 616
  • 26 Browder CC. Curr. Org. Synth. 2011; 8: 628
  • 27 Kozikowski AP. Acc. Chem. Res. 1984; 17: 410
  • 28 Turchi IJ, Dewar MJ. S. Chem. Rev. 1975; 75: 389
  • 29 Sperry JB, Wright DL. Curr. Opin. Drug Discovery Dev. 2005; 8: 723
  • 30 Hu Y, Xin X, Wan B. Tetrahedron Lett. 2015; 56: 32
  • 31 Wirth T. Top. Curr. Chem. 2016; 373: 1
  • 32 Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Application of Polyvalent Iodine Compounds. John Wiley & Sons; Chichester: 2014
  • 33 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 34 Morimoto K, Dohi T, Kita Y. Synlett 2017; 28: 1680
  • 35 Stuart DR. Chem. Eur. J. 2017; 23: 15852
  • 36 Wang M, Chen S, Jiang X. Chem. Asian J. 2018; 13: 2195
  • 37 Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
  • 38 Hyatt IF. D, Dave L, David N, Kaur K, Medard M, Mowdawalla C. Org. Biomol. Chem. 2019; 17: 7822
  • 39 Dohi T, Kita Y. Curr. Org. Chem. 2016; 20: 580
  • 40 Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
  • 41 Le Vaillant F, Waser J. Chem. Sci. 2019; 10: 8909
  • 42 Li Y, Hari DP, Vita MV, Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
  • 43 Huang X, Groves JT. ACS Catal. 2016; 6: 751
  • 44 Budhwan R, Yadav S, Murarka S. Org. Biomol. Chem. 2019; 17: 6326
  • 45 Yoshimura A, Saito A, Zhdankin VV. Chem. Eur. J. 2018; 24: 15156
  • 46 Aradi K, Toth BL, Tolnai GL, Novak Z. Synlett 2016; 27: 1456
  • 47 Ghosh MK, Rajkiewicz AA, Kalek M. Synthesis 2019; 51: 359
  • 48 Hari DP, Caramenti P, Waser J. Acc. Chem. Res. 2018; 51: 3212
  • 49 Charpentier J, Fruh N, Togni A. Chem. Rev. 2015; 115: 650
  • 50 Maiti S, Alam MT, Bal A, Mal P. Adv. Synth. Catal. 2019; 361: 4401
  • 51 Saito A. ARKIVOC 2017; (i): 84
  • 52 Yoshimura A, Zhdankin VV. ARKIVOC 2017; (i): 99
  • 53 Hargaden GC, Guiry PJ. Chem. Rev. 2009; 109: 2505
  • 54 Reuman M, Meyers AI. Tetrahedron 1985; 41: 837
  • 55 Moon NG, Harned AM. Tetrahedron Lett. 2013; 54: 2960
  • 56 Liu G.-Q, Yang C.-H, Li Y.-M. J. Org. Chem. 2015; 80: 11339
  • 57 Yi W, Liu Q.-Y, Fang X.-X, Lou S.-C, Liu G.-Q. Org. Biomol. Chem. 2018; 16: 7012
  • 58 Yu J, Yang H, Fu H. Adv. Synth. Catal. 2014; 356: 3669
  • 59 Mondal B, Hazra S, Naktode K, Panda TK, Roy B. Tetrahedron Lett. 2014; 55: 5625
  • 60 Jeon H, Kim D, Lee JH, Song J, Lee WS, Kang DW, Kang S, Lee SB, Choi S, Hong KB. Adv. Synth. Catal. 2018; 360: 779
  • 61 Ranjith J, Rajesh N, Sridhar B, Radha Krishna P. Org. Biomol. Chem. 2016; 14: 10074
  • 62 Guo T, Huang F, Jiang Q, Yu Z. Chem. Eur. J. 2018; 24: 14368
  • 63 Carlucci C, Tota A, Colella M, Ronamazzi G, Clarkson GJ, Luisi R, Degennaro L. Chem. Heterocycl. Compd. 2018; 54: 428
  • 64 Wappes EA, Nakafuku KM, Nagib DA. J. Am. Chem. Soc. 2017; 139: 10204
  • 65 Stateman LM, Wappes EA, Nakafuku KM, Edwards KM, Nagib DA. Chem. Sci. 2019; 10: 2693
  • 66 Han Y.-C, Zhang Y.-D, Jia Q, Cui J, Zhang C. Org. Lett. 2017; 19: 5300
  • 67 Edmunds JJ, Motherwell WB. J. Chem. Soc., Chem. Commun. 1989; 1348
  • 68 Alhalib A, Kamouka S, Moran WJ. Org. Lett. 2015; 17: 1453
  • 69 Kamouka S, Moran WJ. Beilstein J. Org. Chem. 2017; 13: 1823
  • 70 Butt SE, Das M, Sotiropoulos J.-M, Moran WJ. J. Org. Chem. 2019; 84: 15605
  • 71 Haupt JD, Berger M, Waldvogel SR. Org. Lett. 2019; 21: 242
  • 72 Roesel AF, Broese T, Majek M, Francke R. ChemElectroChem 2019; 6: 4229
  • 73 Scheidt F, Thiehoff C, Yilmaz G, Meyer S, Daniliuc CG, Kehr G, Gilmour R. Beilstein J. Org. Chem. 2018; 14: 1021
  • 74 Koser GF, Yu S.-M. J. Org. Chem. 1975; 40: 1166
  • 75 Zhu C, Yoshimura A, Solntsev P, Ji L, Wei Y, Nemykin VN, Zhdankin VV. Chem. Commun. 2012; 48: 10108
  • 76 Okamura Y, Sato D, Yoshimura A, Zhdankin VV, Saito A. Adv. Synth. Catal. 2017; 359: 3243
  • 77 Saito A, Matsumoto A, Hanzawa Y. Tetrahedron Lett. 2010; 51: 2247
  • 78 Zheng Y, Li X, Ren C, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2012; 77: 10353
  • 79 Shishlyk OS, Shcherbatiuk AV, Iminov RT, Tverdokhlebov AV, Tolmachev AA, Mykhailiuk PK, Biitseva AV. J. Fluorine Chem. 2017; 196: 88
  • 80 Romero-Estudillo I, Batchu VR, Boto A. Adv. Synth. Catal. 2014; 356: 3742
  • 81 Liu Q, Zhang X, He Y, Hussain MI, Hu W, Xiong Y, Zhu X. Tetrahedron 2016; 72: 5749
  • 82 Varma RS, Saini RK, Prakash O. Tetrahedron Lett. 1997; 38: 2621
  • 83 Prakash O, Pannu K, Kumar A. Molecules 2006; 11: 43
  • 84 Jung MH, Choi S.-W, Cho K.-W. J. Heterocycl. Chem. 2000; 37: 969
  • 85 Jung MH, Park J.-G, Ryu B.-S, Cho K.-W. J. Heterocycl. Chem. 1999; 36: 429
  • 86 Varma RS, Kumar D. J. Heterocycl. Chem. 1998; 35: 1533
  • 87 Kang I.-J, Wang H.-M, Lin M.-L, Chen L.-C. J. Chin. Chem. Soc. 2002; 49: 1031
  • 88 Yu Z, Ma L, Yu W. Synlett 2012; 23: 1534
  • 89 Yu P, Zheng S.-C, Yang N.-Y, Tan B, Liu X.-Y. Angew. Chem. Int. Ed. 2015; 54: 4041
  • 90 Hempel C, Nachtsheim BJ. Synlett 2013; 24: 2119
  • 91 Zhao F, Liu X, Qi R, Zhang-Negrerie D, Huang J, Du Y, Zhao K. J. Org. Chem. 2011; 76: 10338
  • 92 Liu X, Cheng R, Zhao F, Zhang-Negrerie D, Du Y, Zhao K. Org. Lett. 2012; 14: 5480
  • 93 Saito A, Hyodo N, Hanzawa Y. Molecules 2012; 17: 11046
  • 94 Saito A, Taniguchi A, Kambara Y, Hanzawa Y. Org. Lett. 2013; 15: 2672
  • 95 Suzuki S, Saito A. J. Org. Chem. 2017; 82: 11859
  • 96 Lee JC, Seo J.-W, Baek JW. Synth. Commun. 2007; 37: 2159
  • 97 Kumar D, Sundaree S, Petel G, Kumar A. J. Heterocycl. Chem. 2010; 47: 1425
  • 98 Lee JC, Choi HJ, Lee YC. Tetrahedron Lett. 2003; 44: 123
  • 99 Lee JC, Kim S, Lee YC. Synth. Commun. 2003; 33: 1611
  • 100 Chen JM, Wu LL, Huang X. Chin. Chem. Lett. 2004; 15: 143
  • 101 Asari N, Takemoto Y, Shinomoto Y, Yagyu T, Yoshimura A, Zhdankin VV, Saito A. Asian J. Org. Chem. 2016; 5: 1314
  • 102 Herszman JD, Berger M, Waldvogel SR. Org. Lett. 2019; 21: 7893
  • 103 Kawano Y, Togo H. Tetrahedron 2009; 65: 6251
  • 104 Ishiwata Y, Togo H. Tetrahedron 2009; 65: 10720
  • 105 Kawano Y, Togo H. Synlett 2008; 217
  • 106 Yagyu T, Takemoto Y, Yoshimura A, Zhdankin VV, Saito A. Org. Lett. 2017; 19: 2506
  • 107 Asouti A, Hadjiarapoglou LP. Tetrahedron Lett. 1998; 39: 9073
  • 108 Gogonas EP, Hadjiarapoglou LP. Tetrahedron Lett. 2000; 41: 9299
  • 109 Spyroudis S, Tarantili P. J. Org. Chem. 1993; 58: 4885
  • 110 Batsila C, Kostakis G, Hadjiarapoglou LP. Tetrahedron Lett. 2002; 43: 5997
  • 111 Matveeva ED, Podrugina TA, Pavlova AS, Mironov AV, Gleiter R, Zefirov NS. Eur. J. Org. Chem. 2009; 2323
  • 112 Matveeva ED, Podrugina TA, Pavlova AS, Mironov AV, Zefirov NS. Russ. Chem. Bull. 2008; 57: 2237
  • 113 Nekipelova TD, Kuzmin VA, Matveeva ED, Gleiter R, Zefirov NS. J. Phys. Org. Chem. 2013; 26: 137
  • 114 Chen AD, Herbort JH, Wappes EA, Nakafuku KM, Mustafa DN, Nagib DA. Chem. Sci. 2020; 11: 2479
  • 115 Das B, Holla H, Mahender G, Banerjee J, Reddy MR. Tetrahedron Lett. 2004; 45: 7347
  • 116 Mendelsohn BA, Lee S, Kim S, Teyssier F, Aulakh VS, Ciufolini MA. Org. Lett. 2009; 11: 1539
  • 117 Liang H, Ciufolini MA. Tetrahedron 2010; 66: 5884
  • 118 Kumar R, Kumar M, Prakash O. Heteroat. Chem. 2016; 27: 228
  • 119 Maiti S, Samanta P, Biswas G, Dhara D. ACS Omega 2018; 3: 562
  • 120 Harding SL, Marcuccio SM, Paul SG. Beilstein J. Org. Chem. 2012; 8: 606
  • 121 Yang H.-T, Ruan X.-J, Miao C.-B, Sun X.-Q. Tetrahedron Lett. 2010; 51: 6056
  • 122 Bhosale S, Kurhade S, Vyas S, Palle VP, Bhuniya D. Tetrahedron 2010; 66: 9582
  • 123 Das B, Holla H, Mahender G, Venkateswarlu K, Bandgar BP. Synthesis 2005; 1572
  • 124 Frie JL, Jeffrey CS, Sorensen EJ. Org. Lett. 2009; 11: 5394
  • 125 Jen T, Mendelsohn BA, Ciufolini MA. J. Org. Chem. 2011; 76: 728
  • 126 Park SW, Nam T.-G, Kim S.-H, Song J, Park GY, Kim D, Hong KB. Beilstein J. Org. Chem. 2018; 14: 1028
  • 127 Hu X.-Q, Feng G, Chen J.-R, Yan D.-M, Zhao Q.-Q, Wei Q, Xiao W.-J. Org. Biomol. Chem. 2015; 13: 3457
  • 128 Kong W, Guo Q, Xu Z, Wang G, Jiang X, Wang R. Org. Lett. 2015; 17: 3686
  • 129 Yu J.-M, Cai C. Org. Biomol. Chem. 2018; 16: 490
  • 130 Yoshimura A, Nguyen KC, Rohde GT, Postnikov PS, Yusubov MS, Zhdankin VV. J. Org. Chem. 2017; 82: 11742
  • 131 Raihan MJ, Kavala V, Kuo C.-W, Raju BR, Yao C.-F. Green Chem. 2010; 12: 1090
  • 132 Pal G, Paul S, Ghosh PP, Das AR. RSC Adv. 2014; 4: 8300
  • 133 Chatterjee N, Pandit P, Halder S, Patra A, Maiti DK. J. Org. Chem. 2008; 73: 7775
  • 134 Tanaka S, Ito M, Kishikawa K, Kohmoto S, Yamamoto M. Nippon Kagaku Kaishi 2002; 471
  • 135 Stang PJ, Murch P. Tetrahedron Lett. 1997; 38: 8793
  • 136 Balalas T, Peperidou C, Hadjipavlou-Litina DJ, Litinas KE. Synthesis 2016; 48: 281
  • 137 Radhakrishna AS, Sivaprakash K, Singh BB. Synth. Commun. 1991; 21: 1625
  • 138 Yoshimura A, Middleton KR, Todora AD, Kastern BJ, Koski SR, Maskaev AV, Zhdankin VV. Org. Lett. 2013; 15: 4010
  • 139 Xiang C, Li T, Yan J. Synth. Commun. 2014; 44: 682
  • 140 Han L, Zhang B, Xiang C, Yan J. Synthesis 2014; 46: 503
  • 141 Yoshimura A, Nguyen KC, Rohde GT, Saito A, Yusubov MS, Zhdankin VV. Adv. Synth. Catal. 2016; 358: 2340
  • 142 Wendeln C, Singh I, Rinnen S, Schulz C, Arlinghaus HF, Burley GA, Ravoo BJ. Chem. Sci. 2012; 3: 2479
  • 143 Waheed M, Ahmed N, Alsharif MA, Alahmdi MI, Mukhtar S. ChemistrySelect 2019; 4: 1872
  • 144 Singhal A, Parumala SK. R, Sharma A, Peddinti RK. Tetrahedron Lett. 2016; 57: 719
  • 145 Sanders BC, Friscourt F, Ledin PA, Mbua NE, Arumugam S, Guo J, Boltje TJ, Popik VV, Boons G.-J. J. Am. Chem. Soc. 2011; 133: 949
  • 146 Ledin PA, Kolishetti N, Boons G.-J. Macromolecules 2013; 46: 7759
  • 147 Hou Y, Lu S, Liu G. J. Org. Chem. 2013; 78: 8386
  • 148 Kim M, Hwang YS, Cho W, Park SB. ACS Comb. Sci. 2017; 19: 407
  • 149 Niu T.-f, Lv M.-f, Wang L, Yi W.-b, Cai C. Org. Biomol. Chem. 2013; 11: 1040
  • 150 von Zons T, Brokmann L, Lippke J, Preusse T, Huelsmann M, Schaate A, Behrens P, Godt A. Inorg. Chem. 2018; 57: 3348
  • 151 Jawalekar AM, Reubsaet E, Rutjes FP. J. T, van Delft FL. Chem. Commun. 2011; 47: 3198
  • 152 Jadhav RD, Mistry HD, Motiwala H, Kadam KS, Kandre S, Gupte A, Gangopadhyay AK, Sharma R. J. Heterocycl. Chem. 2013; 50: 774
  • 153 Yoshimura A, Jarvi ME, Shea MT, Makitalo CL, Rohde GT, Yusubov MS, Saito A, Zhdankin VV. Eur. J. Org. Chem. 2019; 6682
  • 154 Subramanian P, Kaliappan KP. Chem. Asian J. 2018; 13: 2031