Synlett 2020; 31(14): 1394-1399
DOI: 10.1055/s-0040-1707099
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Enabled Aerobic Denitrative C3-Alkenylation of Indoles with β-Nitrostyrenes

Ruchi Chawla
a   Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
,
Ritu Kapoor
b   Green Synthesis Lab, Department of Chemistry, University of Allahabd, Prayagraj 211002, India   Email: ldsyadav@hotmail.com
,
Lal Dhar S. Yadav
a   Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
b   Green Synthesis Lab, Department of Chemistry, University of Allahabd, Prayagraj 211002, India   Email: ldsyadav@hotmail.com
› Author Affiliations
R.C. is grateful to Department of Science and Technology, Ministry of Science and Technology, India for the award of DST WOS-A project (Grant No. SR/WOS-A/CS-54/2018) and financial support.
Further Information

Publication History

Received: 15 March 2020

Accepted after revision: 06 April 2020

Publication Date:
22 April 2020 (online)


Abstract

Herein, we unveil the first visible-light-mediated alkenylation reaction of indoles. The reaction follows a denitrative radical pathway where β-nitrostyrenes have been utilized as the alkene precursors for the C3-styrenylation of indoles under visible-light irradiation to afford biologically and synthetically important 3-alkenylindoles. High regioselectivity, absence of any photocatalyst, metal, external oxidant, acid or base, and the use of visible light and air as inexpensive clean reagents are the key highlights of the developed method.

Supporting Information

 
  • References and Notes

  • 1 Baeyer A, Emmerling A. Ber. Dtsch. Chem. Ges. 1869; 2: 679
    • 3a Sashidhara KV, Dodda RP, Sonkar R, Palnati GR, Bhatia G. Eur. J. Med. Chem. 2014; 81: 499
    • 3b Dolusic E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, Pochet L, Van den Eynde B, Masereel B, Wouters J, Frederick R. J. Med. Chem. 2011; 54: 5320
    • 3c Corigliano DM, Syed R, Messineo S, Lupia A, Patel R, Reddy CV. R, Dubey PK, Colica C, Amato R, Sarro GD, Alcaro S, Indrasena A, Brunetti A. PeerJ 2018; 6: 5386
    • 3d Lafayette EA, de Almeida SM. V, Cavalcanti Santos RV, de Oliveira JF, Amorim CA. D. C, da Silva RM. F, Pitta MG. D. R, Pitta ID. R, de Moura RO, de Carvalho Júnior LB, de Melo Rêgo MJ. B, de Lima MD. C. A. Eur. J. Med. Chem. 2017; 136: 511
    • 3e Ozdemir A, Altıntop MD, Turan-Zitouni G, Çiftçi GA, Ertorun I, Alatas O, Kaplancıklı ZA. Eur. J. Med. Chem. 2015; 89: 304
    • 3f Jin G, Lee S, Choi M, Son S, Kim G.-W, Oh J.-W, Lee C, Lee K. Eur. J. Med. Chem. 2014; 75: 413
    • 4a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 4b Narayanam JM, Stephenson CR. Chem. Soc. Rev. 2011; 40: 102
    • 4c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 4d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 4e Chen JR, Hu XQ, Lu LQ, Xiao WJ. Acc. Chem. Res. 2016; 49: 1911
    • 4f Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
    • 5a Pettersson B, Hasimbegovic V, Bergman J. J. Org. Chem. 2011; 76: 1554
    • 5b Tsou H.-R, MacEwan G, Birnberg G, Zhang N, Brooijmans N, Toral-Barza L, Hollander I, Ayral-Kaloustian S, Yu K. Bioorg. Med. Chem. Lett. 2010; 20: 2259
    • 6a Zheng H, He P, Liu Y, Zhang Y, Liu X, Lin L, Feng X. Chem. Commun. 2014; 50: 8794
    • 6b Enders D, Joie C, Deckers K. Chem. Eur. J. 2013; 19: 10818
    • 6c Tan B, Hernández-Torres G, Barbas CF. III. J. Am. Chem. Soc. 2011; 133: 12354
    • 6d Gioia C, Hauville A, Bernardi L, Fini F, Ricci A. Angew. Chem. Int. Ed. 2008; 47: 9236
    • 6e Shih JL, Nguyen TS, May JA. Angew. Chem. Int. Ed. 2015; 54: 9931
    • 6f Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 6g Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193
    • 6h McCabe SR, Wipf P. Org. Biomol. Chem. 2016; 14: 5894
    • 6i Wallwey C, Li S.-M. Nat. Prod. Rep. 2011; 28: 496
  • 7 Jia C, Lu W, Kitamura T, Fujiwara Y. Org. Lett. 1999; 1: 2097
    • 8a Grimster NP, Gauntlett C, Godfrey CR. A, Gaunt MJ. Angew. Chem. Int. Ed. 2005; 44: 3125
    • 8b Chen W.-L, Gao Y.-R, Mao S, Zhang Y.-L, Wang Y.-F, Wang Y.-Q. Org. Lett. 2012; 14: 5920
    • 8c Huang Q, Song Q, Cai J, Zhang X, Lin S. Adv. Synth. Catal. 2013; 355: 1512
    • 8d Verma AK, Jha RR, Chaudhary R, Tiwari RK, Danodia AK. Adv. Synth. Catal. 2013; 355: 421
    • 8e Gemoets HP. L, Hessel V, Noël T. Org. Lett. 2014; 16: 5800
    • 8f Jia K.-Y, Yu J.-B, Jiang Z.-J, Su W.-K. J. Org. Chem. 2016; 81: 6049
    • 8g Kannaboina P, Kumar KA, Das P. Org. Lett. 2016; 18: 900
    • 8h Paul A, Chatterjee D, Banerjee S, Yadav S. Beilstein J. Org. Chem. 2020; 16: 140
    • 9a Xiang S.-K, Zhang B, Zhang L.-H, Cui Y, Jiao N. Chem. Commun. 2011; 47: 8097
    • 9b Sahu S, Banerjee A, Maji MS. Org. Lett. 2017; 19: 464
    • 10a Gao M, Tian J, Lei A. Chem. Asian J. 2014; 9: 2068
    • 10b Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
    • 10c Lancianesi S, Palmieri A, Petrini M. Chem. Rev. 2014; 114: 7108
    • 10d Talalay P, De Long MJ, Prochaska HJ. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 8261
    • 10e Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
    • 10f Kim JH, Kim JH, Lee GE, Lee JE, Chung IK. Mol. Pharmacol. 2003; 63: 1117
    • 10g Yan G, Borah AJ, Wang L. Org. Biomol. Chem. 2014; 12: 6049
    • 11a Jang Y.-J, Shih Y.-K, Liu J.-Y, Kuo W.-Y, Yao C.-F. Chem. Eur. J. 2003; 9: 2123
    • 11b Yao C.-F, Chu C.-M, Liu J.-T. J. Org. Chem. 1998; 63: 719
    • 11c Liu J.-Y, Liu J.-T, Yao C.-F. Tetrahedron Lett. 2001; 42: 3613
    • 11d Zhang N, Quan Z.-J, Zhang Z, Da Y.-X, Wang X.-C. Chem. Commun. 2016; 52: 14234
    • 11e Wagh G, Autade S, Patil PC, Akamanchi KG. New J. Chem. 2018; 42: 3301
    • 11f Tripathi S, Kapoor R, Yadav LD. S. Adv. Synth Catal. 2018; 360: 1407
    • 11g Tripathi S, Yadav LD. S. New J. Chem. 2018; 42: 3765
    • 11h Yadav AK, Singh KN. New J. Chem. 2017; 41: 14914
    • 11i Cai X.-H, Zhang H, Guo H. Curr. Org. Chem. 2019; 23: 1131
    • 12a Ding W, Zhou QQ, Xuan J, Li TR, Lu LQ, Xiao WJ. Tetrahedron Lett. 2014; 55: 4648
    • 12b Yadav S, Srivastava M, Rai P, Tripathi BP, Mishra A, Singh J, Singh J. New J .Chem. 2016; 40: 9694
    • 12c Rathore V, Kumar S. Green Chem. 2019; 21: 2670
    • 12d Yu Z.-Y, Zhao J.-N, Yang F, Tang X.-F, Wu Y.-F, Ma C.-F, Song B, Yun L, Meng Q.-W. RSC Adv. 2020; 10: 4825
    • 13a Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2015; 56: 653
    • 13b Kapoor R, Chawla R, Yadav LD. S. Tetrahedron Lett. 2019; 60: 805
    • 13c Chawla R, Yadav LD. S. Org. Biomol. Chem. 2019; 17: 4761
    • 14a Rai A, Yadav LD. S. Org. Biomol. Chem. 2011; 9: 8058
    • 14b Rai A, Yadav LD. S. Tetrahedron 2012; 68: 2459
    • 14c Chawla R, Rai A, Singh AK, Yadav LD. S. Tetrahedron Lett. 2012; 53: 5323
    • 14d Keshari T, Kapoorr R, Yadav LD. S. Eur. J. Org. Chem. 2016; 2695
  • 15 Fekarurhobo GK, Angaye SS, Obomann FG. J. Emerging Trends Eng. Appl. Sci. 2013; 4: 394
  • 16 Mohr L.-M, Bauer A, Jandl C, Bach T. Org. Biomol. Chem. 2019; 17: 7192
  • 17 General Procedure for the Synthesis of 3-Alkenylindoles 3 A mixture of indole 1 (1.5 mmol) and β-nitrostyrene (2, 1.0 mmol) in CH3CN (3 mL) was irradiated with visible light (white-light-emitting diode, 7.0 W) at a distance of 0.75 cm in a 10 mL round-bottom flask with stirring at r.t. for 18 h. Upon completion of the reaction (monitored by TLC), water (5 mL) was added, and the mixture was extracted with EtOAc (3 × 15 mL). The combined organic phases were dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography (EtOAc/n-hexane, 1:19) to afford an analytically pure sample of 3-alkenylindole 3. Characterization Data of Representative 3-Alkenylindoles 3 (E)-3-(4-Methoxystyryl)-1H-indole (3c) 18,9b 1H NMR (400 MHz, DMSO): δ = 11.25 (s, 1 H), 7.98 (d, J = 8.0 Hz, 1 H), 7.58 (d, J = 2.4 Hz, 1 H), 7.50 (d, J = 8.8 Hz, 2 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.26 (d, J = 16.6 Hz, 1 H), 7.15 (t, J = 7.6 Hz, 1 H), 7.10 (t, J = 6.9 Hz, 1 H), 7.04 (d, J = 16.4 Hz, 1 H), 6.92 (d, J = 8.2 Hz, 2 H), 3.76 (s, 3 H). 13C NMR (100 MHz, DMSO): δ = 158.0, 137.0, 131.2, 126.6, 125.3, 125.2, 123.2, 121.7, 120.3, 119.8, 119.5, 114.1, 113.9, 111.9, 55.1. HRMS (ESI): m/z calcd for C17H16NO [M + H]+: 250.1226; found: 250.1196. 3-[(E)-2-(Thiophen-2-yl)vinyl]-1H-indole (3i) 18,19 1H NMR (400 MHz, DMSO): δ = 11.34 (s, 1 H), 7.94 (d, J = 7.6 Hz, 1 H), 7.64 (s, 1 H), 7.41 (d, J = 7.6 Hz, 1 H), 7.32–7.31 (m, 2 H), 7.17–7.10 (m, 4 H), 7.01 (s, 1 H). 13C NMR (100 MHz, DMSO): δ = 144.1, 137.0, 127.8, 126.4, 124.9, 124.3, 123.0, 122.3, 121.8, 119.8, 119.7, 117.1, 113.2, 111.9. HRMS (ESI): m/z calcd for C14H12NS [M + H]+: 226.0685; found: 226.0681. (E)-5-Fluoro-3-styryl-1H-indole (3l) 19 1H NMR (400 MHz, DMSO): δ = 11.47 (s, 1 H), 7.82 (d, J = 10.0 Hz, 1 H), 7.75 (s, 1 H), 7.60 (d, J = 7.2 Hz, 2 H), 7.45–7.41 (m, 2 H), 7.35 (t, J = 6.8 Hz, 2 H), 7.19 (t, J = 6.6 Hz, 1 H), 7.10 (d, J = 17.1 Hz, 1 H), 7.03 (t, J = 8.4 Hz, 1 H). 13C NMR (100 MHz, DMSO): δ = 159.0, 138.9, 134.0, 129.0, 128.1, 126.7, 126.0, 125.8, 123.9, 122.4, 114.4, 113.3, 110.4, 105.3. HRMS (ESI): m/z calcd for C16H13FN [M + H]+: 238.1027; found: 238.1007.
  • 18 Low KH, Magomedov NA. Org. Lett. 2005; 7: 2003
  • 19 Guan X.-K, Liu G.-F, An D, Zhang H, Zhang S.-Q. Org. Lett. 2019; 21: 5438