Synlett 2021; 32(04): 362-369
DOI: 10.1055/s-0040-1706646
cluster
Radicals – by Young Chinese Organic Chemists

Recent Advances in Radical-Involved Alkynylation of Unactivated C(sp3)–H Bonds by Hydrogen Atom Abstraction

Zheng-Hua Zhang
a   School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. of China
b   Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
,
He Wei
a   School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. of China
,
Zhong-Liang Li
c   Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
,
Xin-Yuan Liu
b   Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21831002, 21804066, and 21801116), the Natural Science Foundation of Shandong Province (ZR2017BB065), the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), the Guangdong Innovative Program (2019BT02Y335), and the SUSTech Special Fund for the Construction of High-Level Universities (G02216303) is appreciated.


Abstract

The direct C(sp3)–H functionalization is one of the major research topics in synthetic chemistry since C(sp3)–H bonds are ubiquitous in every aspect of chemistry. Despite impressive advances in transition-metal-catalyzed C(sp3)–H activation, the radical-initiated process via hydrogen atom abstraction (HAA) of C(sp3)–H bonds represents a more appealing strategy owing to the mild reaction conditions and good regioselectivity. Given the importance of alkynes as versatile synthons in organic synthesis and key structural motifs in drug discovery, great efforts have been made toward their synthesis via the combination of HAA and alkynylation process in recent years. This review summarizes the recent progress in radical-initiated C(sp3)–H alkynylation reactions with emphasis on the alkynylating reagents and mechanistic discussion.

1 Introduction

2 Alkynylation of C(sp3)–H via Intermolecular Hydrogen Atom Abstraction

3 Alkynylation of C(sp3)–H via Intramolecular Hydrogen Atom Abstraction

4 Conclusion



Publication History

Received: 26 October 2020

Accepted after revision: 17 November 2020

Article published online:
21 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Diederich F, Stang PJ, Tykwinski RR. Acetylene Chemistry: Chemistry, Biology, and Material Science . Wiley-VCH; Weinheim: 2005
  • 2 Trost BM, Li C.-J. Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations. Wiley-VCH; Weinheim: 2014
    • 3a Negishi E, Anastasia L. Chem. Rev. 2003; 103: 1979
    • 3b Chinchilla R, Najera C. Chem. Rev. 2007; 107: 874
    • 3c Chinchilla R, Najera C. Chem. Rev. 2014; 114: 1783
    • 4a Chinchilla R, Najera C. Chem. Soc. Rev. 2011; 40: 5084
    • 4b Le Vaillant F, Waser J. Chem. Sci. 2019; 10: 8909
  • 5 Eckhardt M, Fu GC. J. Am. Chem. Soc. 2003; 125: 13642
  • 6 Dong X.-Y, Zhang Y.-F, Ma C.-L, Gu Q.-S, Wang F.-L, Li Z.-L, Jiang S.-P, Liu X.-Y. Nat. Chem. 2019; 11: 1158
  • 7 Smith JM, Qin T, Merchant RR, Edwards JT, Malins LR, Liu Z, Che G, Shen Z, Shaw SA, Eastgate MD, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 11906

    • For reviews on our work, see:
    • 8a Gu Q.-S, Li Z.-L, Liu X.-Y. Acc. Chem. Res. 2020; 53: 170
    • 8b Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32

    • For representative examples, see:
    • 8c Xia H.-D, Li Z.-L, Gu Q.-S, Dong X.-Y, Fang J.-H, Du X.-Y, Wang L.-L, Liu X.-Y. Angew. Chem. Int. Ed. 2020; 59: 16926
    • 8d Dong X.-Y, Cheng J.-T, Zhang Y.-F, Li Z.-L, Zhan T.-Y, Chen J.-J, Wang F.-L, Yang N.-Y, Ye L, Gu Q.-S, Liu X.-Y. J. Am. Chem. Soc. 2020; 142: 9501
    • 8e Cao Y.-X, Dong X.-Y, Yang J, Jiang S.-P, Zhou S, Li Z.-L, Chen G.-Q, Liu X.-Y. Adv. Synth. Catal. 2020; 362: 2280
    • 8f Su X.-L, Ye L, Chen J.-J, Liu X.-D, Jiang S.-P, Wang F.-L, Liu L, Yang C.-J, Chang X.-Y, Li Z.-L, Gu Q.-S, Liu X.-Y. Angew. Chem. Int. Ed. 2020; in press DOI: 10.1002/anie.202009527.
  • 9 Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 10a Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 10b Lu Q, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 49
    • 10c Milan M, Bietti M, Costas M. Chem. Commun. 2018; 54: 9559
    • 10d Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
    • 10e Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
    • 11a Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879
    • 11b He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
  • 12 Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
    • 13a Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 13b Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
    • 13c Li W, Xu W, Xie J, Yu S, Zhu C. Chem. Soc. Rev. 2018; 47: 654
    • 13d Hu X.-Q, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 1960
    • 13e Kärkäs MD. ACS Catal. 2017; 7: 4999
    • 13f Wu X, Zhu C. Chem. Commun. 2019; 55: 9747
    • 13g Wu X, Zhu C. CCS Chem. 2020; 2: 813
    • 15a Shi R, Zhang Z, Hu X. Acc. Chem. Res. 2019; 52: 1471
    • 15b Mankad NP, Cheng L.-J. Chem. Soc. Rev. 2020; 49: 8036
    • 16a Gong J, Fuchs PL. J. J. Am. Chem. Soc. 1996; 118: 4486
    • 16b Xiang JS, Fuchs PL. Tetrahedron Lett. 1996; 37: 5269
  • 17 Stang PJ. Chem. Rev. 1978; 78: 383
  • 18 Zhang R.-Y, Xi L.-Y, Zhang L, Liang S, Chen S.-Y, Yu X.-Q. RSC Adv. 2014; 4: 54349
  • 19 Cheng Z.-F, Feng Y.-S, Rong C, Xu T, Wang P.-F, Xu J, Dai J.-J, Xu H.-J. Green Chem. 2016; 18: 4185
  • 20 Hoshikawa T, Kamijo S, Inoue M. Org. Biomol. Chem. 2013; 11: 164
  • 21 Nagatomo M, Yoshioka S, Inoue M. Chem. Asian J. 2015; 10: 120
    • 22a Paul S, Guin J. Green Chem. 2017; 19: 2530
    • 22b Matsumoto K, Nakajima M, Nemoto T. J. Org. Chem. 2020; 85: 11802
    • 23a Tang S, Wang P, Li H, Lei A. Nat. Commun. 2016; 7: 11676
    • 23b Tang S, Liu Y, Gao X, Wang P, Huang P, Lei A. J. Am. Chem. Soc. 2018; 140: 6006
  • 24 Almasalma AA, Mejía E. Chem. Eur. J. 2018; 24: 12269
  • 25 Almasalma AA, Mejía E. Synthesis 2019; 52: 529
  • 26 Fu L, Zhang Z, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2020; 142: 12493
    • 27a Hofmann AW. Ber. Dtsch Chem. Ges. 1883; 16: 558
    • 27b Löffler K, Freytag C. Ber. Dtsch. Chem. Ges. 1909; 42: 3427
  • 28 Wang L, Xia Y, Bergander K, Studer A. Org. Lett. 2018; 20: 5817
  • 29 Yin Z, Zhang Y, Zhang S, Wu X.-F. Adv. Synth. Catal. 2019; 361: 5478
  • 30 Morcillo SP, Dauncey EM, Kim JH, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 12945
  • 31 Li Z, Torres-Ochoa RO, Wang Q, Zhu J. Nat. Commun. 2020; 11: 403
  • 32 Zhang Z.-H, Dong X.-Y, Du X.-Y, Gu Q.-S, Li Z.-L, Liu X.-Y. Nat. Commun. 2019; 10: 5689
  • 33 Wang C.-Y, Qin Z.-Y, Huang Y.-L, Hou Y.-M, Jin R.-X, Li C, Wang X.-S. Org. Lett. 2020; 22: 4006
  • 34 Guan H, Sun S, Mao Y, Chen L, Lu R, Huang J, Liu L. Angew. Chem. Int. Ed. 2018; 57: 11413
  • 35 Xiong Z, Zhang F, Yu Y, Tan Z, Zhu G. Org. Lett. 2020; 22: 4088