Synthesis 2018; 50(08): 1569-1586
DOI: 10.1055/s-0036-1591930
review
© Georg Thieme Verlag Stuttgart · New York

Remote C–H Functionalization via Selective Hydrogen Atom Transfer

Leah M. Stateman
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA   Email: nagib.1@osu.edu
,
Kohki M. Nakafuku
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA   Email: nagib.1@osu.edu
,
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA   Email: nagib.1@osu.edu
› Author Affiliations
We thank the National Institutes of Health (R35 GM119812), National Science Foundation (CAREER 1654656), and American Chemical Society Petroleum Research Fund for financial support. L.M.S. is grateful for an NSF Graduate Research Fellowship.
Further Information

Publication History

Received: 06 October 2017

Accepted after revision: 13 November 2017

Publication Date:
12 February 2018 (online)


Abstract

The selective functionalization of remote C–H bonds via intramolecular hydrogen atom transfer (HAT) is transformative for organic synthesis. This radical-mediated strategy provides access to novel reactivity that is complementary to closed-shell pathways. As modern methods for mild generation of radicals are continually developed, inherent selectivity paradigms of HAT mechanisms offer unparalleled opportunities for developing new strategies for C–H functionalization. This review outlines the history, recent advances, and mechanistic underpinnings of intramolecular HAT as a guide to addressing ongoing challenges in this arena.

1 Introduction

2 Nitrogen-Centered Radicals

2.1 sp3 N-Radical Initiation

2.2 sp2 N-Radical Initiation

3 Oxygen-Centered Radicals

3.1 Carbonyl Diradical Initiation

3.2 Alkoxy Radical Initiation

3.3 Non-alkoxy Radical Initiation

4 Carbon-Centered Radicals

4.1 sp2 C-Radical Initiation

4.2 sp3 C-Radical Initiation

5 Conclusion

 
  • References

  • 1 Bergman RG. Nature (London) 2007; 446: 391
  • 2 White MC. Science (Washington, D. C.) 2012; 335: 807
  • 3 Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 4 Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
  • 5 Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
  • 6 Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
  • 7 Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
  • 8 Davies HM. L. Manning JR. Nature (London) 2008; 451: 417
  • 9 Roizen JL. Harvey ME. Du BoisJ. Acc. Chem. Res. 2012; 45: 911
  • 10 Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
  • 11 Majetich G. Wheless K. Tetrahedron 1995; 51: 7095
  • 12 Breslow R. Chem. Soc. Rev. 1972; 553
  • 13 Heusler K. Kalvoda J. Angew. Chem. Int. Ed. 1964; 3: 525
  • 14 Mayer JM. Acc. Chem. Res. 2011; 44: 36
  • 15 Robertson J. Pillai J. Lush RK. Chem. Soc. Rev. 2001; 30: 94
  • 16 Čeković Ž. Tetrahedron 2003; 59: 8073
  • 17 Nechab M. Mondal S. Bertrand MP. Chem. Eur. J. 2014; 20: 16034
  • 18 Chiba S. Chen H. Org. Biomol. Chem. 2014; 12: 4051
  • 19 Togo H. Katohgi M. Synlett 2001; 565
  • 20 Merritt E. Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
  • 21 Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
  • 22 Narayanam JM. R. Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
  • 23 Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 24 Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 25 Sibi MP. Manyem S. Zimmerman J. Chem. Rev. 2003; 103: 3263
  • 26 Studer A. Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 27 Yan M. Lo JC. Edwards JT. Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
  • 28 Taniguchi T. Synthesis 2017; 49: 3511
  • 29 Huang XL. Dannenberg JJ. J. Org. Chem. 1991; 56: 5421
  • 30 Roth HG. Romero NA. Nicewicz DA. Synlett 2016; 27: 714
  • 31 Horner JH. Choi S.-Y. Newcomb M. Org. Lett. 2000; 2: 3369
  • 32 Šakić D. Zipse H. Adv. Synth. Catal. 2016; 358: 3983
  • 33 Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
  • 34 Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
  • 35 Hofmann AW. Chem. Ber. 1883; 16: 558
  • 36 Corey EJ. Hertler WR. J. Am. Chem. Soc. 1960; 82: 1657
  • 37 Wolff ME. Chem. Rev. 1963; 63: 55
  • 38 Löffler K. Freytag C. Chem. Ber. 1909; 42: 3427
  • 39 Corey EJ. Hertler WR. J. Am. Chem. Soc. 1958; 80: 2903
  • 40 Baldwin SW. Doll RJ. Tetrahedron Lett. 1979; 20: 3275
  • 41 De Armas P. Carrau R. Concepción JI. Francisco CG. Hernández R. Suárez E. Tetrahedron Lett. 1985; 26: 2493
  • 42 Courtneidge JL. Lusztyk J. Pagé D. Tetrahedron Lett. 1994; 35: 1003
  • 43 Dorta RL. Francisco CG. Suárez E. J. Chem. Soc., Chem. Commun. 1989; 1168
  • 44 Francisco CG. Herrera AJ. Kennedy AR. Melián D. Suárez E. Angew. Chem. Int. Ed. 2002; 41: 856
  • 45 Francisco CG. Herrera AJ. Suárez E. J. Org. Chem. 2003; 68: 1012
  • 46 Paz NR. Rodríguez-Sosa D. Valdés H. Marticorena R. Melián D. Copano MB. González CC. Herrera AJ. Org. Lett. 2015; 17: 2370
  • 47 Martínez C. Muñiz K. Angew. Chem. Int. Ed. 2015; 54: 8287
  • 48 Blanksby SJ. Ellison GB. Acc. Chem. Res. 2003; 36: 255
  • 49 Becker P. Duhamel T. Stein CJ. Reiher M. Muñiz K. Angew. Chem. Int. Ed. 2017; 56: 8004
  • 50 Wappes EA. Fosu SC. Chopko TC. Nagib DA. Angew. Chem. Int. Ed. 2016; 55: 9974
  • 51 Kim S. Yeon KM. Yoon KS. Tetrahedron Lett. 1997; 38: 3919
  • 52 Lu H. Jiang H. Wojtas L. Zhang XP. Angew. Chem. Int. Ed. 2010; 49: 10192
  • 53 Lyaskovskyy V. Suarez AI. O. Lu H. Jiang H. Zhang XP. de Bruin B. J. Am. Chem. Soc. 2011; 133: 12264
  • 54 Hennessy ET. Betley TA. Science (Washington, D. C.) 2013; 340: 591
  • 55 Nikishin GI. Troyansky EI. Lazareva MI. Tetrahedron Lett. 1985; 26: 3743
  • 56 Qin Q. Yu S. Org. Lett. 2015; 17: 1894
  • 57 Katohgi M. Togo H. Yamaguchi K. Masataka Y. Tetrahedron 1999; 55: 14885
  • 58 Reddy LR. Reddy BV. S. Corey EJ. Org. Lett. 2006; 8: 2819
  • 59 Liu T. Myers MC. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 306
  • 60 Groendyke BJ. Abusalim DI. Cook SP. J. Am. Chem. Soc. 2016; 138: 12771
  • 61 Chen K. Richter JM. Baran PS. J. Am. Chem. Soc. 2008; 130: 7247
  • 62 Short MA. Blackburn JM. Roizen JL. Angew. Chem. Int. Ed. 2018; 57: 296
  • 63 Liu T. Mei T.-S. Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 5871
  • 64 Choi GJ. Zhu Q. Miller DC. Gu CJ. Knowles RR. Nature (London) 2016; 539: 268
  • 65 Chu JC. K. Rovis T. Nature (London) 2016; 539: 272
  • 66 Chen D.-F. Chu JC. K. Rovis T. J. Am. Chem. Soc. 2017; 139: 14897
  • 67 Homer JH. Musa OM. Bouvier A. Newcomb M. J. Am. Chem. Soc. 1998; 120: 7738
  • 68 Forrester AR. Gill M. Sadd JS. Thomson RH. J. Chem. Soc., Chem. Commun. 1975; 677
  • 69 Boivin J. Fouquet E. Zard SZ. Tetrahedron Lett. 1991; 32: 4299
  • 70 Uchiyama K. Hayashi Y. Narasaka K. Chem. Lett. 1998; 27: 1261
  • 71 Lin X. Stien D. Weinreb SM. Org. Lett. 1999; 1: 637
  • 72 Forrester AR. Gill M. Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 621
  • 73 Forrester AR. Gill M. Meyer CJ. Sadd JS. Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 606
  • 74 Forrester AR. Gill M. Napier RJ. Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 632
  • 75 Forrester AR. Napier RJ. Thomson RH. J. Chem. Soc., Perkin Trans. 1 1981; 984
  • 76 Zhang L. Ang GY. Chiba S. Org. Lett. 2011; 13: 1622
  • 77 Shu W. Nevado C. Angew. Chem. Int. Ed. 2017; 56: 1881
  • 78 Li J. Zhang P. Jiang M. Yang H. Zhao Y. Fu H. Org. Lett. 2017; 19: 1994
  • 79 Davies J. Booth SG. Essafi S. Dryfe RA. W. Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
  • 80 Shu W. Lorente A. Gómez-Bengoa E. Nevado C. Booth RG. Nat. Commun. 2017; 8: 13832
  • 81 Suzuki A. Tabata M. Ueda M. Tetrahedron Lett. 1975; 16: 2195
  • 82 Wang YF. Chen H. Zhu X. Chiba S. J. Am. Chem. Soc. 2012; 134: 11980
  • 83 Chen H. Sanjaya S. Wang Y.-F. Chiba S. Org. Lett. 2013; 15: 212
  • 84 Chen H. Chiba S. Org. Biomol. Chem. 2014; 12: 42
  • 85 Wappes EA. Nakafuku KM. Nagib DA. J. Am. Chem. Soc. 2017; 139: 10204
  • 86 Pinner A. Klein F. Chem. Ber. 1877; 10: 1889
  • 87 Overman LE. J. Am. Chem. Soc. 1976; 98: 2901
  • 88 Glover SA. Hammond GP. Hamnan DG. Mills JG. Rowbottom CA. Aust. J. Chem. 1993; 46: 1213
  • 89 Norrish RG. W. Appleyard ME. S. J. Chem. Soc. 1934; 874
  • 90 Lu Y. Carlson D. Morrison H. J. Am. Chem. Soc. 1993; 115: 6446
  • 91 Breslow R. Baldwin S. Flechtner T. Kalicky P. Liu S. Washburn W. J. Am. Chem. Soc. 1973; 95: 3251
  • 92 Renata H. Zhou Q. Baran PS. Science (Washington, D. C.) 2013; 339: 59
  • 93 Barton DH. R. Beaton JM. Geller LE. Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
  • 94 Barton DH. R. Beaton JM. Geller LE. Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076
  • 95 Barton DH. R. Hesse RH. Pechet MM. Smith LC. J. Chem. Soc., Perkin Trans. 1 1979; 1159
  • 96 Barton DH. R. Beaton JM. J. Am. Chem. Soc. 1960; 82: 2641
  • 97 Corey EJ. Arnett JF. Widiger GN. J. Am. Chem. Soc. 1975; 97: 430
  • 98 Herzog A. Knobler CB. Hawthorne MF. Angew. Chem. Int. Ed. 1998; 37: 1552
  • 99 Greene FD. Savitz ML. Lau HH. Osterholtz FD. Smith WN. J. Am. Chem. Soc. 1961; 83: 2196
  • 100 Walling C. Padwa A. J. Am. Chem. Soc. 1961; 83: 2207
  • 101 Walling C. Padwa A. J. Am. Chem. Soc. 1963; 85: 1597
  • 102 Kochi JK. Bemis A. Jenkins CL. J. Am. Chem. Soc. 1968; 90: 4616
  • 103 Kochi JK. Acc. Chem. Res. 1974; 7: 351
  • 104 Čeković Z. Green MM. J. Am. Chem. Soc. 1974; 96: 3000
  • 105 Čeković Ž. Dimttruević L. Djokić G. Srnić T. Tetrahedron 1979; 35: 2021
  • 106 Čeković Z. Cvetković M. Tetrahedron Lett. 1982; 23: 3791
  • 107 Kundu R. Ball ZT. Org. Lett. 2010; 12: 2460
  • 108 Hashimoto T. Hirose D. Taniguchi T. Angew. Chem. Int. Ed. 2014; 53: 2730
  • 109 Meystre CH. Heusler K. Kalvoda J. Wieland P. Anner G. Wettstein A. Helv. Chim. Acta 1962; 45: 1317
  • 110 Tsunoi S. Ryu I. Okuda T. Tanaka M. Komatsu M. Sonoda N. J. Am. Chem. Soc. 1998; 120: 8692
  • 111 Ryu I. Chem. Soc. Rev. 2001; 30: 16
  • 112 Trahanovsky WS. Young MG. Nave PM. Tetrahedron Lett. 1969; 10: 2501
  • 113 Concepción JI. Francisco CG. Hernández R. Salazar JA. Suárez E. Tetrahedron Lett. 1984; 25: 1953
  • 114 Francisco CG. Herrera AJ. Suárez E. Tetrahedron Lett. 2000; 41: 7869
  • 115 Petrović G. Čeković Ž. Tetrahedron Lett. 1997; 38: 627
  • 116 Petrović G. Saičić RN. Čeković Ž. Tetrahedron Lett. 1997; 38: 7107
  • 117 Petrović G. Čeković Ž. Tetrahedron 1999; 55: 1377
  • 118 Kim S. Lee TA. Song Y. Synlett 1998; 471
  • 119 Zhu H. Wickenden JG. Campbell NE. Leung JC. T. Johnson KM. Sammis GM. Org. Lett. 2009; 11: 2019
  • 120 Zhu H. Leung JC. T. Sammis GM. J. Org. Chem. 2015; 80: 965
  • 121 Zhang J. Li Y. Zhang F. Hu C. Chen Y. Angew. Chem. Int. Ed. 2016; 55: 1872
  • 122 Wang C. Harms K. Meggers E. Angew. Chem. Int. Ed. 2016; 55: 13495
  • 123 Zhu X. Wang Y.-F. Ren W. Zhang F.-L. Chiba S. Org. Lett. 2013; 15: 3214
  • 124 Lemercier BC. Pierce JG. Org. Lett. 2015; 17: 4542
  • 125 Ozawa J. Tashiro M. Ni J. Oisaki K. Kanai M. Chem. Sci. 2016; 7: 1904
  • 126 Ni J. Ozawa J. Oisaki K. Kanai M. Org. Biomol. Chem. 2016; 14: 4378
  • 127 Nikishin GI. Svitanko IV. Troyansky EI. J. Chem. Soc., Perkin Trans. 2 1983; 595
  • 128 Sathyamoorthi S. Du Bois J. Org. Lett. 2016; 18: 6308
  • 129 Warren JJ. Tronic TA. Mayer JM. Chemical Reviews 2010; 110: 6961
  • 130 Curran DP. Kim D. Liu HT. Shen W. J. Am. Chem. Soc. 1988; 110: 5900
  • 131 Curran DP. Shen W. J. Am. Chem. Soc. 1993; 115: 6051
  • 132 Vellucci JK. Beaudry CM. Org. Lett. 2015; 17: 4558
  • 133 Dénès F. Beaufils F. Renaud P. Synlett 2008; 2389
  • 134 Curran DP. Xu J. J. Am. Chem. Soc. 1996; 118: 3142
  • 135 Curran DP. Yu H. Synthesis 1992; 123
  • 136 Parasram M. Chuentragool P. Sarkar D. Gevorgyan V. J. Am. Chem. Soc. 2016; 138: 6340
  • 137 Snieckus V. Cuevas JC. Sloan CP. Liu H. Curran DP. J. Am. Chem. Soc. 1990; 112: 896
  • 138 Curran DP. Abraham AC. Liu H. J. Org. Chem. 1991; 56: 4335
  • 139 Curran DP. Abraham AC. Tetrahedron 1993; 49: 4821
  • 140 Curran DP. Yu H. Liu H. Tetrahedron 1994; 50: 7343
  • 141 Beckwith AL. J. Bowry VW. Bowman WR. Mann E. Parr J. Storey JM. D. Angew. Chem. Int. Ed. 2004; 43: 95
  • 142 Murakami M. Hayashi M. Ito Y. J. Org. Chem. 1992; 57: 793
  • 143 Booth SE. Benneche T. Undheim K. Tetrahedron 1995; 51: 3665
  • 144 Undheim K. Williams L. J. Chem. Soc., Chem. Commun. 1994; 883
  • 145 Williams L. Booth SE. Undheim K. Tetrahedron 1994; 50: 13697
  • 146 Gribble GW. Fraser HL. Badenock JC. Chem. Commun. 2001; 805
  • 147 Khan TA. Tripoli R. Crawford JJ. Martin CG. Murphy JA. Org. Lett. 2003; 5: 2971
  • 148 Yoshikai N. Mieczkowski A. Matsumoto A. Ilies L. Nakamura E. J. Am. Chem. Soc. 2010; 132: 5568
  • 149 Wertjes WC. Wolfe LC. Waller PJ. Kalyani D. Org. Lett. 2013; 15: 5986
  • 150 Chen J.-Q. Wei Y.-L. Xu G.-Q. Liang Y.-M. Xu P.-F. Chem. Commun. 2016; 52: 6455
  • 151 Liu P. Tang J. Zeng X. Org. Lett. 2016; 18: 5536
  • 152 Galli C. Chem. Rev. 1988; 88: 765
  • 153 Meerwein H. Büchner E. van Emster K. J. Prakt. Chem. 1939; 152: 237
  • 154 Hey DH. Turpin DG. J. Chem. Soc. 1954; 2471
  • 155 Han G. LaPorte MG. McIntosh MC. Weinreb SM. Parvez M. J. Org. Chem. 1996; 61: 9483
  • 156 Huang F.-Q. Dong X. Qi L.-W. Zhang B. Tetrahedron Lett. 2016; 57: 1600
  • 157 Huang F.-Q. Zhou G.-X. Dong X. Qi L.-W. Zhang B. Asian J. Org. Chem. 2016; 5: 192
  • 158 Shaaban S. Oh J. Maulide N. Org. Lett. 2016; 18: 345
  • 159 Voica A.-F. Mendoza A. Gutekunst WR. Fraga JO. Baran PS. Nat. Chem. 2012; 4: 629
  • 160 Hollister KA. Conner ES. Spell ML. Deveaux K. Maneval L. Beal MW. Ragains JR. Angew. Chem. Int. Ed. 2015; 54: 7837
  • 161 Tian H. Yang H. Zhu C. Fu H. Sci. Rep. 2016; 6: 19931
  • 162 Crich D. Sun S. Brunckova J. J. Org. Chem. 1996; 61: 605
  • 163 Ueno Y. Chino K. Watanabe M. Moriya O. Okawara M. J. Am. Chem. Soc. 1982; 104: 5564
  • 164 Stork G. Mook R. Biller SA. Rychnovsky SD. J. Am. Chem. Soc. 1983; 105: 3741
  • 165 Masnyk M. Tetrahedron Lett. 1997; 38: 879
  • 166 Wood ME. Bissiriou S. Lowe C. Windeatt KM. Org. Biomol. Chem. 2013; 11: 2712
  • 167 Viehe HG. Janousek Z. Merenyi R. Stella L. Acc. Chem. Res. 1985; 18: 148
  • 168 Parasram M. Chuentragool P. Wang Y. Shi Y. Gevorgyan V. J. Am. Chem. Soc. 2017; 139: 14857
  • 169 Nishiyama H. Kitajima T. Matsumoto M. Itoh K. J. Org. Chem. 1984; 49: 2298