Synthesis 2021; 53(06): 1023-1034
DOI: 10.1055/s-0040-1706102
short review

Direct Oxidation of Primary Alcohols to Carboxylic Acids

,
T.J.W. and V.C. are sponsored by the US National Science Foundation (CHE-1856395) and the US Department of Energy, Office of Energy Efficiency and Renewable Energy (DE-EE-0008825).


Abstract

Oxidation of primary alcohols to carboxylic acids is a fundamental transformation in organic chemistry, yet despite its simplicity, extensive use, and relationship to pH, it remains a subject of active research for synthetic organic chemists. Since 2013, a great number of new methods have emerged that utilize transition-metal compounds as catalysts for acceptorless dehydrogenation of alcohols to carboxylates. The interest in this reaction is explained by its atom economy, which is in accord with the principles of sustainability and green chemistry. Therefore, the methods for the direct synthesis of carboxylic acids from alcohols is ripe for a modern survey, which we provide in this review.

1 Introduction

2 Thermodynamics of Primary Alcohol Oxidation

3 Oxometalate Oxidation

4 Transfer Dehydrogenation

5 Acceptorless Dehydrogenation

6 Electrochemical Methods

7 Outlook



Publication History

Received: 05 October 2020

Accepted after revision: 16 November 2020

Article published online:
17 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ciufolini MA, Swaminathan S. Tetrahedron Lett. 1989; 30: 3027
  • 2 Crimmins MT, DeBaillie AC. J. Am. Chem. Soc. 2006; 128: 4936
  • 3 Salunke GB, Shivakumar I, Gurjar MK. Tetrahedron Lett. 2009; 50: 2048
  • 4 Fuwa H. Strategies Tactics Org. Synth. 2016; 12: 143
  • 5 Song ZJ, Zhao M, Desmond R, Devine P, Tschaen DM, Tillyer R, Frey L, Heid R, Xu F, Foster B, Li J, Reamer R, Volante R, Grabowski EJ. J, Dolling UH, Reider PJ. J. Org. Chem. 1999; 64: 9658
  • 6 Tojo G, Fernández M. Oxidation of Alcohols to Aldehydes and Ketones. A Guide to Current Common Practice. Tojo G. Springer; New York: 2006
  • 7 Tojo G, Fernández M. Oxidation of Primary Alcohols to Carboxylic Acids. A Guide to Current Common Practice. Tojo G. Springer; New York: 2007
  • 8 Bratsch SG. J. Phys. Chem. Ref. Data 1989; 18: 1
  • 9 NIST Chemistry WebBook, NIST Standard Reference Database Number 69 [Online]. Linstrom PJ, Mallard WG. National Institute of Standards and Technology; Gaithersburg: 2020. DOI: DOI org/10.18434/T4D303
  • 10 Kong Y.-X, Di Y.-Y, Qi Y.-D, Yang W.-W, Tan Z.-C. Thermochim. Acta 2009; 488: 27
  • 11 Reid EE, Worthington H, Larchar AW. J. Am. Chem. Soc. 1939; 61: 99
  • 12 Sawama Y, Morita K, Asai S, Kozawa M, Tadokoro S, Nakajima J, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2015; 357: 1205
  • 13 Pourbaix M. In Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed. National Association of Corrosion Engineers; Houston: 1974
  • 14 Rowe RA, Jones MM. Inorg. Synth. 1957; 5: 113
  • 15 Wang S.-S, Popović Z, Wu H.-H, Liu Y. ChemCatChem 2011; 3: 1208
  • 16 Muzart J. Chem. Rev. 1992; 92: 113
  • 17 Katre SD. Pharma Chem. 2018; 10: 12
  • 18 Freeman, F. Chromic Acid, In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]; Wiley & Sons, Posted April 15, 2001.
  • 19 Tung CL, Wong CT. T, Fung EY. M, Li X. Org. Lett. 2016; 18: 2600
  • 20 Corey EJ, Schmidt G. Tetrahedron Lett. 1979; 20: 399
  • 21 Piancatelli, G. Pyridinium Dichromate, In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]; Wiley & Sons, Posted April 15, 2001.
  • 22 Zhao M, Li J, Song Z, Desmond R, Tschaen DM, Grabowski EJ. J, Reider PJ. Tetrahedron Lett. 1998; 39: 5323
  • 23 Hunsen M. Synthesis 2005; 2487
  • 24 Miller CW, Taylor AE. J. Biol. Chem. 1914; 17: 531
  • 25 Jacobson SE, Muccigrosso DA, Mares F. J. Org. Chem. 1979; 44: 921
  • 26 Trost BM, Masuyama Y. Tetrahedron Lett. 1984; 25: 173
  • 27 Wei J, Shi X, He D, Zhang M. Chin. Sci. Bull. 2002; 47: 2060
  • 28 Sato K, Aoki M, Takagi J, Noyori R. J. Am. Chem. Soc. 1997; 119: 12386
  • 29 Fatiadi AJ. Synthesis 1987; 85
  • 30 Lee, D. G.; Ribagorda, M.; Adrio, J. Potassium Permanganate, In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]; Wiley & Sons, Posted March 15, 2007.
  • 31 Kenyon J, Platt BC. J. Chem. Soc. 1939; 633
  • 32 Crombie L, Harpe SH. J. Chem. Soc. 1950; 2685
  • 33 Menger FM, Lee C. Tetrahedron Lett. 1981; 22: 1655
  • 34 Soldatenkov AT, Temesgen AV, Kolyadina NM. Chem. Heterocycl. Compd. 2004; 40: 537
  • 35 Delaude L, Laszlo P. J. Org. Chem. 1996; 61: 6360
  • 36 Martín, V. S.; Palazón, J. M.; Rodríguez, C. M.; Nevill, C. R. Jr.; Hutchinson, D. K. Ruthenium(VIII) Oxide, In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]; Wiley & Sons, Posted September 16, 2013.
  • 37 Ley SV, Norman J, Griffith WP, Marsden SP. Synthesis 1994; 639
  • 38 Schmidt A.-KC, Stark CB. W. Org. Lett. 2011; 13: 4164
  • 39 Lybaert J, Maes BU. W, Tehrani KA, Wael K. Electrochim. Acta 2015; 182: 693
  • 40 Lee DG, Hall DT, Cleland JH. Can. J. Chem. 1972; 50: 3741
  • 41 Fonquerna S, Rios R, Moyano A, Pericàs MA, Riera A. Eur. J. Org. Chem. 1999; 3459
  • 42 Malin JM. Inorg. Synth. 1980; 20: 61
  • 43 Coleman KS, Coppe M, Thomas C, Osborn JA. Tetrahedron Lett. 1999; 40: 3723
  • 44 Fehling H. Justus Liebigs Ann. Chem. 1849; 72: 106
  • 45 Benedict SR. J. Biol. Chem. 1909; 5: 485
  • 46 Barfoed C. Z. Anal. Chem. 1873; 12: 27
  • 47 Kakis FJ, Fetizon M, Douchkine N, Golfier M, Mourgues P, Prange T. J. Org. Chem. 1974; 39: 523
  • 48 Tollens B. Ber. Dtsch. Chem. Ges. 1882; 15: 1635
  • 49 Nicolaou KC, Petasis NA, Uenishi J, Zipkin RE. J. Am. Chem. Soc. 1982; 104: 5557
  • 50 Junqi T, Shiqing M. Rare Met. Mater. Eng. 2013; 42: 2232
  • 51 Nooy AE. J, Besemer AC, Bekkum H. Synthesis 1996; 1153
  • 52 Anelli PL, Biffi C, Montanari F, Quici S. J. Org. Chem. 1987; 52: 2559
  • 53 Zhao M, Li J, Mano E, Song Z, Tschaen DM, Grabowski EJ. J, Reider PJ. J. Org. Chem. 1999; 64: 2564
  • 54 Yasuda K, Ley SV. J. Chem. Soc., Perkin Trans. 1 2002; 1024
  • 55 Zweifel T, Naubron J, Grützmacher H. Angew. Chem. Int. Ed. 2009; 48: 559
  • 56 Trincado M, Grützmacher H, Vizza F, Bianchini C. Chem. Eur. J. 2010; 16: 2751
  • 57 Annen S, Zweifel T, Ricatto F, Grützmacher H. ChemCatChem 2010; 2: 1286
  • 58 Mallat T, Baiker A. Chem. Rev. 2004; 104: 3037
  • 59 Tang L, Guo X, Li Y, Zhang S, Zhaa Z, Wang Z. Chem. Commun. 2013; 49: 5213
  • 60 Wang T, Shou H, Kou Y, Liu H. Green Chem. 2009; 11: 562
  • 61 Heinen AW, Peters JA, Bekkum H. Carbohydr. Res. 1997; 304: 155
  • 62 Handa S, Hawes JE, Pryce RJ. Synth. Commun. 1995; 25: 2837
  • 63 Dumas JB, Stas JS. Annal. Chem. 1840; 35: 129
    • 64a Dai Z, Luo Q, Jiang H, Luo Q, Li H, Zhang J, Peng T. Catal. Sci. Technol. 2017; 7: 2506
    • 64b Shao Z, Wang Y, Liu Y, Wang Q, Fu X, Liu Q. Org. Chem. Front. 2018; 5: 1248
  • 65 Nguyen DH, Morin Y, Zhang L, Trivelli X, Capet F, Paul S, Desset S, Dumeignil F, Gauvin RM. ChemCatChem 2017; 9: 2652
  • 66 Pradhan DR, Pattanaik S, Kishore J, Gunanathan C. Org. Lett. 2020; 22: 1852
  • 67 Ghalehshahi HG, Madsen R. Chem. Eur. J. 2017; 23: 11920
  • 68 Monda F, Madsen R. Chem. Eur. J. 2018; 24: 17832
  • 69 Wang X, Wang C, Liu Y, Xiao J. Green Chem. 2016; 18: 4605
  • 70 Dai Z, Luo Q, Meng X, Li R, Zhang J, Peng T. J. Organomet. Chem. 2017; 830: 11
  • 71 Zhang L, Nguyen DH, Raffa G, Trivelli X, Capet F, Desset S, Paul S, Dumeignil F, Gauvin RM. ChemSusChem 2016; 9: 1413
  • 72 Malineni J, Keul H, Möller M. Dalton Trans. 2015; 44: 17409
  • 73 Santilli C, Makarov IS, Fristrup P, Madsen R. J. Org. Chem. 2016; 81: 9931
  • 74 Wang W.-Q, Cheng H, Yuan Y, He Y.-Q, Wang H.-J, Wang Z.-Q, Sang W, Chen C, Verpoort F. Catalysts 2020; 10: 10
  • 75 Awasthi MK, Singh SK. Inorg. Chem. 2019; 58: 14912
  • 76 Gong D, Hu B, Chen D. Dalton Trans. 2019; 48: 8826
  • 77 Liu H.-M, Jian L, Li C, Zhang C.-C, Fu H.-Y, Zheng X.-L, Chen H, Li R.-X. J. Org. Chem. 2019; 84: 9151
  • 78 Dahl EW, Louis-Goff T, Szymczak NK. Chem. Commun. 2017; 53: 2287
  • 79 Balaraman E, Khaskin E, Leitus G, Milstein D. Nat. Chem. 2013; 5: 122
  • 80 Choi JH, Heim LE, Ahrens M, Prechtl MH. G. Dalton Trans. 2014; 43: 17248
  • 81 Sarbajna A, Dutta I, Daw P, Dinda S, Rahaman SM. W, Sarkar A, Bera JK. ACS Catal. 2017; 7: 2786
  • 82 Casas F, Trincado M, Rodriguez-Lugo R, Baneerje D, Grützmacher H. ChemCatChem 2019; 11: 5241
  • 83 Singh A, Singh SK, Saini AK, Mobin SM, Mathur P. Appl. Organomet. Chem. 2018; 32: e4574
  • 84 Li Y, Nielsen M, Li B, Dixneuf PH, Junge H, Beller M. Green Chem. 2015; 17: 193
  • 85 Sharninghausen LS, Campos J, Manas MG, Crabtree RH. Nat. Commun. 2014; 5: 5084
  • 86 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. ACS Catal. 2016; 6: 2014
  • 87 Sun Z, Liu Y, Chen J, Huang C, Tu T. ACS Catal. 2015; 5: 6573
  • 88 Fujita K, Tamura R, Tanaka Y, Yoshida M, Onoda M, Yamaguchi R. ACS Catal. 2017; 7: 7226
  • 89 Yao W, DeRegnaucourt AR, Shrewsbury ED, Loadholt KH, Silprakob W, Qu F, Brewster TP, Papish ET. Organometallics 2020; 39: 3656
  • 90 Cherepakhin V, Williams TJ. ACS Catal. 2018; 8: 3754
  • 91 Weinberg NL, Weinberg HR. Chem. Rev. 1968; 68: 449
  • 92 Nguyen BH, Perkins RJ, Smith JA, Moeller KD. Beilstein J. Org. Chem. 2015; 11: 280
  • 93 Lowstuter WR, Lowy A. J. Electrochem. 1940; 77: 451
  • 94 Burzyk J, Zjawiony I, Budniok A. J. Prakt. Chem. 1987; 329: 131
  • 95 Kaulen J, Schäfer HJ. Synthesis 1979; 513
  • 96 Moyer BA, Thompson MS, Meyer TJ. J. Am. Chem. Soc. 1980; 102: 2310
  • 97 Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. ACS Catal. 2018; 8: 6738
  • 98 Wender PA. Tetrahedron 2013; 69: 7529