Synthesis 2021; 53(05): 879-888
DOI: 10.1055/s-0040-1706085
short review

Recent Advances in Metal-Catalyzed, Electrochemical Coupling Reactions of sp2 Halides/Boronic Acids and sp3 Centers


Abstract

Traditionally, metal-catalyzed cross-coupling reactions rely on stable but expensive metals, such as palladium. However, the recent development of synthetic organic electrochemistry allows for in situ redox manipulations, expanding the use of cheaper, abundant and sustainable metals, such as nickel and copper as efficient cross-coupling catalysts. This short review covers the recent advances in metal-catalyzed electrochemical coupling reactions, with a focus on reactions of sp2 electrophiles and nucleophiles with sp3 coupling partners to form both C–C and C–heteroatom bonds.

1 Introduction

2 Nickel-Catalyzed C–C sp2–sp3 Coupling Reactions

3 Coupling of Aryl Groups with Heteroatomic Nuclei

4 Conclusion



Publikationsverlauf

Eingereicht: 20. September 2020

Angenommen nach Revision: 29. Oktober 2020

Publikationsdatum:
24. November 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Farnia G, Romanin A, Capobianco G, Torzo F. J. Electroanal. Chem. Interfacial Electrochem. 1971; 33: 31
  • 2 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 3 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 4 Munir I, Zahoor AF, Rasool N, Naqvi SA. R, Zia KM, Ahmad R. Mol. Diversity 2019; 23: 215
  • 5 Li C, Kawamata Y, Nakamura H, Vantourout JC, Liu Z, Hou Q, Bao D, Starr JT, Chen J, Yan M, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 13088
  • 6 Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
  • 7 Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJ. B. J. Am. Chem. Soc. 2017; 139: 4769
  • 8 Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
  • 9 Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
  • 10 Tang S, Liu Y, Lei A. Chem 2018; 4: 27
  • 11 Durandetti M, Nédélec JY, Périchon J. Org. Lett. 2001; 3: 2073
  • 12 Périchon J, Gosmini C, Buriez O. Electrochemical Generation and Reaction of Zinc Reagents . In The Chemistry of Organozinc Compounds . Rappoport Z, Marek I. John Wiley & Sons; Chichester: 2006: 755
  • 13 Fillon H, Le Gall E, Gosmini C, Périchon J. Tetrahedron Lett. 2002; 43: 5941
  • 14 Kurono N, Inoue T, Tokuda M. Tetrahedron 2005; 61: 11125
  • 15 Heravi MM, Hajiabbasi P. Monatsh. Chem. 2012; 143: 1575
  • 16 Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
  • 17 Weix DJ. Acc. Chem. Res. 2015; 48: 1767
  • 18 Everson DA, Jones BA, Weix DJ. J. Am. Chem. Soc. 2012; 134: 6146
  • 19 Diccianni JB, Diao T. Trends Chem. 2019; 1: 830
  • 20 Urgin K, Barhdadi R, Condon S, Léonel E, Pipelier M, Blot V, Thobie-Gautier C, Dubreuil D. Electrochim. Acta 2010; 55: 4495
  • 21 Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
  • 22 Richmond E, Moran J. Synthesis 2017; 50: 499
  • 23 Yin J, Maguire CK, Yasuda N, Brunskill AP. J, Klapars A. Org. Process Res. Dev. 2017; 21: 94
  • 24 Takai K, Kakiuchi T, Utimoto K. J. Org. Chem. 1994; 59: 2671
  • 25 Acemoglu M, Baenziger M, Krell CM, Marterer W. Experiences with Negishi Couplings on Technical Scale in Early Development. In Transition Metal-Catalyzed Couplings in Process Chemistry: Case Studies from the Pharmaceutical Industry. Magano J, Dunetz JR. Wiley-VCH; Weinheim: 2013: 15
  • 26 Badir SO, Molander GA. Chem 2020; 6: 1327
  • 27 Sambiagio C, Noël T. Trends Chem. 2020; 2: 92
  • 28 Sperr JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
  • 29 Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
  • 30 Yoshida JI, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
  • 31 Rollin Y, Troupel M, Tuck DG, Perichon J. J. Organomet. Chem. 1986; 303: 131
  • 32 Mori M, Hashimoto Y, Ban Y. Tetrahedron Lett. 1980; 21: 631
  • 33 Conan A, Sibille S, D’Incan E, Périchon J. J. Chem. Soc., Chem. Commun. 1990; 48
  • 34 Durandetti M, Sibille S, Nédélec JY, Périchon J. Synth. Commun. 1994; 24: 145
  • 35 Durandetti M, Nédélec JY, Périchon J. J. Org. Chem. 1996; 61: 1748
  • 36 Durandetti M, Périchon J, Nédélec JY. J. Org. Chem. 1997; 62: 7914
  • 37 Perkins RJ, Pedro DJ, Hansen EC. Org. Lett. 2017; 19: 3755
  • 38 Hansen EC, Li C, Yang S, Pedro D, Weix DJ. J. Org. Chem. 2017; 82: 7085
  • 39 Hansen EC, Pedro DJ, Wotal AC, Gower NJ, Nelson JD, Caron S, Weix DJ. Nat. Chem. 2016; 8: 1126
  • 40 Perkins RJ, Hughes AJ, Weix DJ, Hansen EC. Org. Process Res. Dev. 2019; 23: 1746
  • 41 Truesdell BL, Hamby TB, Sevov CS. J. Am. Chem. Soc. 2020; 142: 5884
  • 42 Li H, Breen CP, Seo H, Jamison TF, Fang YQ, Bio MM. Org. Lett. 2018; 20: 1338
  • 43 Folgueiras-Amador AA, Wirth TJ. Flow Chem. 2017; 7: 94
  • 44 Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
  • 45 Pletcher D, Green RA, Brown RC. D. Chem. Rev. 2018; 118: 4573
  • 46 Koyanagi T, Herath A, Chong A, Ratnikov M, Valiere A, Chang J, Molteni V, Loren J. Org. Lett. 2019; 21: 816
  • 47 Delano TJ, Reisman SE. ACS Catal. 2019; 9: 6751
  • 48 Jiao KJ, Liu D, Ma HX, Qiu H, Fang P, Mei TS. Angew. Chem. Int. Ed. 2020; 59: 6520
  • 49 Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 6513
  • 50 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
  • 51 Corcoran EB, Pirnot MT, Lin S, Dreher SD, Dirocco DA, Davies IW, Buchwald SL, Macmillan DW. C. Science 2016; 353: 279
  • 52 Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, Degruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
  • 53 Qi HL, Chen DS, Ye JS, Huang JM. J. Org. Chem. 2013; 78: 7482
  • 54 Wexler RP, Nuhant P, Senter TJ, Gale-Day ZJ. Org. Lett. 2019; 21: 4540
  • 55 Wang Y, Deng L, Wang X, Wu Z, Wang Y, Pan Y. ACS Catal. 2019; 9: 1630
  • 56 Liu D, Ma HX, Fang P, Mei TS. Angew. Chem. Int. Ed. 2019; 58: 5033
  • 57 Zhu M, Alami M, Messaoudi S. Chem. Commun. 2020; 56: 4464
  • 58 Sengmany S, Ollivier A, Le Gall E, Léonel E. Org. Biomol. Chem. 2018; 16: 4495
  • 59 Bai Y, Liu N, Wang S, Wang S, Ning S, Shi L, Cui L, Zhang Z, Xiang J. Org. Lett. 2019; 21: 6835
  • 60 Daili F, Ouarti A, Pinaud M, Kribii I, Sengmany S, Le Gall E, Léonel E. Eur. J. Org. Chem. 2020; 3452
  • 61 Zhu C, Yue H, Nikolaienko P, Rueping M. CCS Chem. 2020; 2: 179
  • 62 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 63 Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
  • 64 Moeller KD. Chem. Rev. 2018; 118: 4817