Synthesis
DOI: 10.1055/s-0040-1706036
short review

The Use of Electrophilic Cyclization for the Preparation of Condensed Heterocycles

,
Mikhailo Onysko


Dedicated to the 75th anniversary of Uzhhorod National University

Abstract

Condensed heterocycles are well-known for their excellent biological effects and they are undeniably important compounds in organic chemistry. Electrophilic cyclization reactions are widely used for the synthesis of mono-heterocyclic compounds. This review highlights the utility of electrophilic cyclization reactions as an effective generic tool for the synthesis of various condensed heterocycles containing functional groups that are able to undergo further chemical transformations, such as nucleophilic substitution, elimination, re-cyclization, cleavage, etc. This review describes the reactions of unsaturated derivatives of different heterocycles with various electrophilic agents (halogens, arylsulfanyl chlorides, mineral acids) resulting in annulation of an additional partially saturated heterocycle. The electrophilic reaction conditions, plausible mechanisms and the use of such transformations in organic synthesis are also discussed. The review mainly focuses on research published since 2002 in order to establish the current state of the art in this area.

1 Introduction

2 Electrophilic Cyclization Pathways Involving a Nitrogen Nucleo­philic Center

3 Electrophilic Cyclization Pathways Involving a Chalcogen Nucleophilic Center

3.1 Sulfur Centers

3.2 Oxygen Centers

3.3 Selenium Centers

4 Strategies and Mechanisms

5 Conclusion



Publication History

Received: 16 February 2021

Accepted after revision: 09 April 2021

Publication Date:
19 May 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Eftekhari-Sis B, Zirak M. Chem. Rev. 2015; 115: 151
    • 1b De Coen LM, Heugebaert TS. A, García D, Stevens CV. Chem. Rev. 2016; 116: 80
    • 1c Fizer MM, Slivka MV. Chem. Heterocycl. Compd. 2016; 52: 155
    • 1d Abdelmoniem AM, Abdelhamid IA. Curr. Org. Chem. 2016; 20: 1512
    • 1e Stępień M, Gońka E, Żyła M, Sprutta N. Chem. Rev. 2017; 117: 3479
    • 1f Xuan J, Studer A. Chem. Soc. Rev. 2017; 46: 4329
    • 1g Mamane V. Curr. Org. Chem. 2017; 21: 1342
    • 1h Korol NI, Slivka MV. Chem. Heterocycl. Compd. 2017; 53: 852
    • 1i Oukoloff K, Lucero B, Francisco KR, Brunden KR, Ballatore C. Eur. J. Med. Chem. 2019; 165: 332
    • 1j Passador K, Thorimbert S, Botuha C. Synthesis 2019; 51: 384
    • 1k Slivka MV, Korol NI, Fizer MM. J. Heterocycl. Chem. 2020; 57: 3236
  • 2 Bougault MJ. R. C. R. Acad. Sci. 1904; 139: 864 https://gallica.bnf.fr/ark:/12148/bpt6k30930/f864.item.r=Bougault?lang=EN (accessed May 18, 2021
  • 3 Staninets VI, Shilov EA. Russ. Chem. Rev. 1971; 40: 272
    • 4a Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734
    • 4b Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 738
    • 5a Gevaza YI, Staninets VI. Chem. Heterocycl. Compd. 1985; 21: 359
    • 5b Gevaza YI, Staninets VI. Chem. Heterocycl. Compd. 1986; 22: 231
    • 5c Gevaza YI, Staninets VI. Chem. Heterocycl. Compd. 1988; 24: 1073
  • 6 Harding KE, Tiner TH. In Comprehensive Organic Synthesis: Additions to and Substitutions at C–C π-Bonds, Vol. 4. Trost BM, Fleming I, Semmelhack MF. Elsevier; Oxford: 1991: 363
  • 7 Rousseau G, Homsi F. Chem. Soc. Rev. 1997; 26: 453
  • 8 Gevaza YI, Staninets VI. Ukr. Khim. Zh. 2002; 68: 67
    • 9a Robin S, Rousseau G. Eur. J. Org. Chem. 2002; 3099
    • 9b French AN, Bissmire S, Wirth T. Chem. Soc. Rev. 2004; 33: 354
    • 9c Togo H, Iida S. Synlett 2006; 2159
    • 9d Rodriguez F, Fananas FJ. In Handbook of Cyclization Reactions, Vol. 2. Ma S. Wiley-VCH; Weinheim: 2010: 951
  • 11 Mehta S, Larock RC. J. Org. Chem. 2010; 75: 1652
  • 12 Godoi B, Schumacher RF, Zeni G. Chem. Rev. 2011; 111: 2937
    • 13a Murai K, Fujioka H. Heterocycles 2013; 87: 763
    • 13b Jiang X, Liu H. In Comprehensive Organic Synthesis II, Vol. 4. Knochel P, Molander GA. Elsevier Science; Amsterdam: 2014: 412
    • 13c Wirth T, Mizar P. Synthesis 2017; 49: 981
    • 13d Andrade VS, Mattos MC. Synthesis 2019; 51: 1841
  • 14 Smolanka IV, Dobosh AA, Khripak SM. Chem. Heterocycl. Compd. 1973; 9: 1169
    • 15a Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
    • 15b Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
    • 15c Hao L, Zhan Z.-P. Curr. Org. Chem. 2011; 15: 1625
    • 15d Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
    • 15e Zheng Z, Wang Z, Wang Y, Zhang L. Chem. Soc. Rev. 2016; 45: 4448
    • 16a Zeni G, Ludtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032
    • 16b Potapov VA, Musalov MV, Musalova MV, Amosova SV. Curr. Org. Chem. 2016; 20: 136
    • 16c Musalov MV, Potapov VA. Chem. Heterocycl. Compd. 2017; 53: 150
    • 16d Kut MM, Onysko MY. Chem. Heterocycl. Compd. 2020; 56: 503
  • 17 Khripak SM, Yakubets VI, Migalina YV, Koz’min АS, Zefirov NS. Chem. Heterocycl. Compd. 1989; 25: 347
  • 18 Khripak SM, Plesha MV, Slivka MV, Yakubets VI, Krivovyaz AA. Russ. J. Org. Chem. 2004; 40: 1705
    • 19a Khripak SM, Slivka MV, Slivka MV, Lendel VG. Russ. J. Org. Chem. 2007; 43: 439
    • 19b Devinyak OT, Slivka MV, Slivka MV, Vais VM, Lendel VG. Med. Chem. Res. 2012; 21: 2263
  • 20 Vas’kevich AI, Vas’kevich RI, Staninets VI, But SA, Chernega AN. Russ. J. Org. Chem. 2007; 43: 1526
  • 21 Slivka M, Krivovjaz A, Slivka M, Lendel V. Heterocycl. Cоmmun. 2013; 19: 189
  • 22 Slivka NYu, Gevaza YuI, Staninets VI. Chem. Heterocycl. Compd. 2004; 40: 660
  • 23 Kim DG, Osheko KYu, Frolova TV. Russ. J. Org. Chem. 2017; 53: 1899
  • 24 Onysko MYu, Svalyavin OV, Turov AV, Lendel VG. Chem. Heterocycl. Compd. 2008; 44: 872
  • 25 Bentya AV, Vas’kevich RI, Bol’but AV, Vovk MV, Staninets VI, Turov AV, Rusanov EB. Russ. J. Org. Chem. 2008; 44: 1362
  • 26 Bentya AV, Vas’kevich RI, Turov AV, Rusanov EB, Vovk MV, Staninets VI. Russ. J. Org. Chem. 2011; 47: 1066
  • 27 Frolova TV, Kim DG, Sharutin VV, Osheko KYu, Slepukhin P. А, Charushin VN. Russ. J. Gen. Chem. 2016; 86: 1288
  • 28 Vas’kevich RI, Dyachenko IV, Vas’kevich AI, Rusanov EB, Vovk MV. Russ. J. Org. Chem. 2015; 51: 556
  • 29 Dyachenko IV, Vas’kevich RI, Vovk MV. Russ. J. Org. Chem. 2014; 50: 263
  • 30 Dyachenko IV, Vas’kevich AI, Vas’kevich RI, Vovk MV. Russ. J. Org. Chem. 2014; 50: 858
  • 31 Dyachenko IV, Vas’kevich RI, Vas’kevich AI, Shishkina SV, Vovk MV. Russ. J. Org. Chem. 2016; 52: 745
  • 32 Frolova TV, Slepukhin P. А, Kim DG. Chem. Heterocycl. Compd. 2011; 47: 252
  • 33 Frolova TV, Kim DG, Slepukhin PA, Osheko KYu. Russ. Chem. Bull. 2017; 66: 690
  • 34 Frolova TV, Kim DG, Slepukhin PA. Russ. J. Org. Chem. 2016; 52: 1344
    • 35a Vas’kevich AI, Gevaza YuI, Vas’kevich RI, Staninets VI. Chem. Heterocycl. Compd. 2004; 40: 1087
    • 35b Slyvka MV, Slyvka MV, Kish AO, Lendel VH. UA Patent 107939, 2015
    • 36a Vas’kevich AI, Bentya AV, Staninets VI. Russ. J. Org. Chem. 2009; 45: 1847
    • 36b Svalyavin OV, Svalyavin MI, Balya AG, Onisko MYu, Turov AV, Lendel VG. Rep. NASU 2014; 1: 136 http://dspace.nbuv.gov.ua/handle/123456789/86801 (accessed Apr 28, 2021)
    • 36c Svalyavin OV, Onysko MYu, Turov AV, Lendel VG. Ukr. Khim. Zh. 2013; 79: 74
    • 36d Vas’kevich RI, Bentya AV, Turov AV, Rusanov EB, Staninets VI, Vovk MV. Russ. J. Org. Chem. 2012; 48: 713
  • 37 Vas’kevich RI, Khripak SM, Staninets VI, Zborovskii YuL, Chernega AN. Russ. J. Org. Chem. 2000; 36: 1061
  • 38 Vas’kevich RI, Vas’kevich AI, Rusanov EB, Staninets VI, Vovk MV. Russ. J. Org. Chem. 2013; 49: 123
    • 39a Kim DG, Galina YuR. Chem. Heterocycl. Compd. 2004; 40: 1339
    • 39b Osheko KYu, Kim DG, El’tsov OS, Shtukina TS. Russ. J. Org. Chem. 2018; 54: 1406
    • 39c Petrova KYu, Kim DG. Russ. J. Org. Chem. 2019; 55: 142
  • 40 Vas’kevich RI, Vas’kevich AI, Rusanov EB, Mel’nyk OYa, Vovk MV. J. Heterocycl. Chem. 2020; 57: 3202
    • 41a Slepukhin PA, Kim DG, Rusinov GL, Charushin VN, Chupakhin ON. Chem. Heterocycl. Compd. 2002; 38: 1142
    • 41b Mishra NM, Vachhani DD, Modha SG, Van der Eycken EV. Eur. J. Org. Chem. 2013; 693
    • 42a Kim DG, Vershinina EA. Chem. Heterocycl. Compd. 2014; 50: 911
    • 42b Resende DI. S. P, Boonpothong P, Sousa E, Kijjoa A, Pinto MM. M. Nat. Prod. Rep. 2019; 36: 7
    • 42c Voskoboynik OYu, Kolomoets OS, Berest GG, Nosulenko IS, Martynenko YuV, Kovalenko SI. Chem. Heterocycl. Compd. 2017; 53: 256
    • 42d Bekheit MS, Farahat AA, Abdel-Wahab BF. Chem Heterocycl Compd. 2016; 52: 766
    • 42e Jiang B, Zhou Y, Kong Q, Jiang H, Liu H, Li J. Molecules 2013; 18: 814
    • 43a Asghari S, Habibi AK. Heteroat. Chem. 2017; 28: e21378
    • 43b Lei M, Tian W, Hu R, Li W, Zhang H. Synthesis 2012; 2519
    • 43c Zhiliang XZ, Sun T, Cai Q, Ni F, Han J, Chen J, Deng H, Shao M, Zhang H, Cao W. J. Fluorine Chem. 2016; 181: 45
    • 43d Hopkin MD, Baxendale IR, Ley SV. A. Synthesis 2008; 1688
    • 43e Esmaeili AA, Nazer M. Synlett 2009; 2119
    • 43f Yavari I, Hojatia M, Azad L, Halvagar MR. Synlett 2018; 29: 1024
    • 43g Hekal MH, Abu El-Azm FS. M. J. Heterocycl. Chem. 2017; 54: 3056
    • 43h Abdullah MA. A, Abuo-Rahma GE-D. A. A, Abdelhafez E.-SM. N, Hassan HA, Abd El-Baky RM. Bioorg. Chem. 2017; 70: 1
    • 43i Tan L, Zhang Z, Gao D, Chan S, Luo J, Tu Z.-C, Zhang Z.-M, Ding K, Ren X, Lu X. Eur. J. Med. Chem. 2019; 166: 318
    • 43j Dang P, Zheng Z, Liang Yu. J. Org. Chem. 2017; 82: 2263
    • 44a Orysyk VV, Zborovskii YuL, Staninets VI, Dobosh AA, Khripak SM. Chem. Heterocycl. Compd. 2003; 39: 640
    • 44b Zborovskii YuL, Orysyk VV, Dobosh AA, Khripak SM, Nesterenko A. М, Staninets VI. Ukr. Khim. Zh. 2002; 68: 95
    • 45a Orysyk VV, Dobosh AA, Zborovskii YuL, Staninets VI, Khripak SM. Ukr. Khim. Zh. 2001; 67: 46
    • 45b Orysyk VV, Zborovskii YuL, Dobosh AA, Staninets VI, Khripak SM. Ukr. Khim. Zh. 2002; 68: 36
    • 45c Britsun VN, Esipenko AN, Staninets VI, Lozinskii MO. Chem. Heterocycl. Compd. 2005; 41: 948
    • 45d Zborovskii YL, Orysyk VV, Dobosh AA, Staninets VI, Khripak SM. Chem. Heterocycl. Compd. 2003; 39: 1099
    • 46a Bakhteeva EI, Kim DG, Dmitriev MV, Krylova YuE. Russ. J. Org. Chem. 2019; 55: 748
    • 46b Bakhteeva EI, Kim DG, Sharutin VV. Russ. J. Org. Chem. 2020; 56: 1321
    • 47a Onysko M, Filak I, Lendel V. Heterocycl. Cоmmun. 2016; 22: 295
    • 47b Onysko M, Filak I, Lendel V. Heterocycl. Cоmmun. 2017; 23: 309
    • 47c Onysko M, Lendel V. Chem. Heterocycl. Compd. 2007; 43: 1020
    • 47d Onysko M, Lendel V. Chem. Heterocycl. Compd. 2009; 45: 853
    • 47e Kim DG. Chem. Heterocycl. Compd. 2008; 44: 1355
    • 47f Kim DG, Vershinina EA, Ezhikova MA, Kodess MI. Russ. J. Org. Chem. 2015; 51: 1313
    • 47g Bartashevich EV, Yushina ID, Vershinina EA, Slepukhin PA, Kim DG. Russ. J. Struct. Chem. 2014; 55: 112
    • 47h Bartashevich EV, Shmanina EA, Yushina ID, Kim DG, Tsirelson VG. Russ. J. Struct. Chem. 2014; 55: 154
    • 47i Vershinina EA, Kim DG, Slepukhin PA. Chem. Heterocycl. Compd. 2011; 46: 1415
    • 47j Kim DG, Vershinina EA, Ovchinnikova IG, Slepukhin PA, Ezhikova MA, Kodess MI. Chem. Heterocycl. Compd. 2018; 54: 977
    • 47k Kim DG, Vershinina EA. Chem. Heterocycl. Compd. 2010; 46: 773
    • 47l Kim DG, Vershinina EA, Sharutin VV. J. Sulfur Chem. 2019; 41: 71
    • 47m Kim DG, Vershinina EA, Sharutin VV. Russ. J. Gen. Chem. 2019; 89: 2353
    • 48a Slepukhin PA, Batalov VI, Kim DG, Charushin VN. Russ. J. Struct. Chem. 2012; 53: 145
    • 48b Batalov VI, Dikhtiarenko A, Yushina ID, Bartashevich EV, Kim DG, García-Granda S. Z. Kristallogr. New Cryst. Struct. 2014; 229: 195
    • 48c Batalov VI, Kim DG, Slepukhin PA. Chem. Heterocycl. Compd. 2013; 49: 1092
  • 49 Borisov AV, Osmanov VK, Borisova GN, Matsulevich ZV, Fukin GK. Mendeleev Commun. 2009; 19: 49
  • 50 Vas’kevich RI, Vas’kevich AI, Turov AV, Staninets VI, Vovk MV. Chem. Heterocycl. Compd. 2011; 47: 1037
    • 51a Rybakova AV, Slepukhin PA, Kim DG. Chem. Heterocycl. Compd. 2013; 49: 1232
    • 51b Kim DG, Zhuravlyova AV. Chem. Heterocycl. Compd. 2010; 46: 896
  • 52 Rybakova AV, Kim DG, Sharutin VV. Russ. J. Gen. Chem. 2014; 84: 272
  • 53 Vas’kevich AI, Turov AV, Staninets VI. Ukr. Khim. Zh. 2007; 73: 60
  • 54 Kim DG, Zhuravlyova AV. Chem. Heterocycl. Compd. 2009; 45: 1281
  • 55 Rybakova AV, Kim DG, Ezhikova MA, Kodess MI, Taher IA. T. Russ. Chem. Bull. 2015; 64: 901
    • 56a Rybakova AV, Kim DG, Sharutin VV. Russ. J. Org. Chem. 2016; 52: 99
    • 56b Rybakova AV, Kim DG, Ezhikova MA, Kodess MI. Russ. J. Org. Chem. 2015; 51: 1016
    • 57a Kim DG, Rybakova AV, Sharutin VV, Danilina EI, Sazhayeva OV. Mendeleev Commun. 2019; 29: 59
    • 57b Rybakova AV, Kim DG, Danilina EI, Sazhaeva OV, Ezhikova MA, Kodess MI. Russ. J. Chem. Chem. Tech. 2020; 63: 19
    • 58a Shmygarev VI, Kim DG. Chem. Heterocycl. Compd. 2004; 40: 1207
    • 58b Il’inykh ES, Kim DG. Chem. Heterocycl. Compd. 2011; 47: 636
    • 58c Usenko RM, Slivka MV, Lendel VG. Chem. Heterocycl. Compd. 2011; 47: 1029
    • 60a Slivka M, Korol N, Fizer M, Baumer V, Lendel V. Heterocycl. Cоmmun. 2018; 24: 197
    • 60b Slyvka MV, Slyvka MV, Usenko RM, Lendel VH. UA Patent 89300, 2010
    • 60c Slyvka MV, Usenko RM, Lendel VG. UA Patent 106610, 2014
  • 61 Il’inykh ES, Kim DG, Kodess MI, Matochkina EG, Slepukhin PA. J. Fluorine Chem. 2013; 149: 24
  • 62 Slivka M, Korol N, Pantyo V, Baumer V, Lendel V. Heterocycl. Cоmmun. 2017; 23: 109
  • 63 Bakherad M, Ghalenoei AK, Keivanloo A. ChemistrySelect 2019; 4: 9238
  • 64 Fizer MM, Slivka MV, Lendel VG. Chem. Heterocycl. Compd. 2013; 49: 1243
  • 65 Khripak SM, Slivka MV, Vilkov RV, Usenko RN, Lendel VG. Chem. Heterocycl. Compd. 2007; 43: 781
  • 66 Fizer M, Sukharev S, Slivka M, Mariychuk R, Lendel V. J. Organomet. Chem. 2016; 804: 6
  • 67 Fizer M, Slivka M, Rusanov E, Turov A, Lendel V. J. Heterocycl. Chem. 2015; 52: 949
    • 68a Tarasova NM, Kim DG, Slepukhin PA. Chem. Heterocycl. Compd. 2015; 51: 923
    • 68b Kim DG, Sudolova NM, Slepukhin PA, Charushin VN. Chem. Heterocycl. Compd. 2011; 46: 1420
    • 69a Kim DG, Sudolova NM, Slepukhin PA. Chem. Heterocycl. Compd. 2011; 47: 631
    • 69b Tarasova NM, Kim DG, El’tsov OS, Shtukina TS, Borisova AE. Russ. J. Org. Chem. 2018; 54: 469
    • 69c Yushina І, Tarasova N, Kim D, Sharutin V, Bartashevich E. Crystals 2019; 9: 506
  • 70 Kim DG. Chem. Heterocycl. Compd. 2007; 43: 1591
  • 71 Nesterenko AM, Vas’kevich RI, Zborovskii YuL, Staninets VI. Russ. Chem. Bull. 2005; 54: 2582
    • 72a Svaljavyn OV, Onysko MYu, Turov AV, Vlasenko YuG, Lendel VG. Chem. Heterocycl. Compd. 2013; 49: 491
    • 72b Slivchuk SV, Brovarets VS, Drach BS. Russ. J. Gen. Chem. 2008; 78: 1210
    • 72c Kut NM, Onysko MY, Lendel VG. Russ. J. Org. Chem. 2020; 56: 1174
    • 72d Petrova KYu, Kim DG, Eltsov OS, Eremenko TD. Russ. J. Gen. Chem. 2019; 89: 697
    • 72e Kim DG, Frolova TV, Petrova KYu, Sharutin VV. Russ. J. Gen. Chem. 2019; 89: 901
    • 72f Kim DG, Petrova KYu, Frolova TV, Sharutin VV, Ovchinnikova IG, Ezhikova MA, Kodess MI. Russ. J. Org. Chem. 2019; 55: 1333
  • 73 Sokolov VB, Aksinenko AYu, Pushin AN, Martynov IV. Russ. Chem. Bull. 2005; 54: 1744
    • 74a Shmygarev VI, Kim DG. Chem. Heterocycl. Compd. 2004; 40: 1077
    • 74b Kim DG, Il’inykh ES. Chem. Heterocycl. Compd. 2011; 47: 524
    • 75a Slivka MV, Khripak SM, Britsun VN, Staninets VI. Russ. J. Org. Chem. 2000; 36: 1033
    • 75b Khrypak S, Slivka M, Zborovskyi Yu, Stanynets V. Ukr. Khim. Zh. 2001; 67: 40
    • 76a Kochikyan TV, Samvelyan MA, Petrosyan AM, Langer PD. Russ. J. Org. Chem. 2015; 51: 1469
    • 76b Fizer M, Slivka M, Lendel V. Chem. Heterocycl. Compd. 2019; 55: 478
  • 77 Jasiński M, Mlostoń G, Heimgartner H. J. Heterocycl. Chem. 2010; 47: 1287
  • 78 Khripak SM, Krivovjaz OO, Slivka MV, Yakubetc VI. J. Org. Pharm. Chem. 2005; 3: 382
    • 79a Slivka MV, Fizer MM, Bereksazi DZh, Mariychuk RT, Kryvoviaz AO, Lendel VG, Khripak NP, Koval GM, Slivka MV. 2019 International Council on Technologies of Environmental Protection (ICTEP) 2019; 230 DOI: 10.1109/ICTEP48662.2019.8968984.
    • 79b Slyvka N, Gevaza Yu, Saliyeva L. Chem. Chem. Technol. 2018; 12: 285
    • 80a Vas’kevich AI, Vovk MV. Russ. J. Org. Chem. 2017; 53: 276
    • 80b Petrova KYu, Kim DG, Sharutin VV, Zakharov DM. Russ. J. Org. Chem. 2020; 56: 29
    • 81a Kalita EV, Kim DG, Yeltsov OS, Shtukina TS. Russ. J. Org. Chem. 2016; 52: 1148
    • 81b Kalita EV, Kim DG. Russ. J. Org. Chem. 2017; 53: 1040
    • 81c Kim DG, Kalita EV, Sharutin VV, Senchurin VS, Belov VO. Russ. J. Gen. Chem. 2018; 88: 2498
  • 82 Ukrainets IV, Bereznyakova NL, Turov AV, Slobodzian SV. Chem. Heterocycl. Compd. 2007; 43: 1159
  • 83 Kim DG, Vershinina EA, Sharutin VV. Russ. J. Org. Chem. 2018; 54: 601
    • 84a Vershinina EA, Kim DG, Slepukhin PA. Chem. Heterocycl. Compd. 2012; 47: 1596
    • 84b Ukrainets IV, Bereznyakova NL, Parshikov VA, Turov AV. Chem. Heterocycl. Compd. 2007; 43: 1269
    • 84c Ukrainets IV, Bereznyakova NL, Gorokhova OV, Turov AV, Shishkina SV. Chem. Heterocycl. Compd. 2007; 43: 1001
    • 84d Ukrainets IV, Sidorenko LV, Gorokhova OV, Shishkina SV, Turov AV. Chem. Heterocycl. Compd. 2007; 43: 617
    • 84e Ukrainets IV, Yangyang L, Bereznyakova NL, Turov AV. Chem. Heterocycl. Compd. 2009; 45: 1235
    • 84f Ukrainets IV, Mospanova EV, Davidenko AA, Shishkina SV. Chem. Heterocycl. Compd. 2010; 46: 617
    • 84g Ukrainets IV, Mospanova EV, Jaradat NA, Bevz OV, Turov AV. Chem. Heterocycl. Compd. 2012; 48: 1347
  • 85 Grimaldi TB, Godoi B, Roehrs JA, Sperança A, Zeni G. Eur. J. Org. Chem. 2013; 2646
    • 86a Gilmore K, Alabugin IV. Chem. Rev. 2011; 111: 6513
    • 86b Mantovani AC, Hernández JG, Bolm C. Eur. J. Org. Chem. 2018; 2458
    • 87a Vas’kevich AI, Zborovskii YuL, Khripak SM, Staninets VI. Ukr. Khim. Zh. 2002; 68: 118
    • 87b Ukrainets IV, Bereznyakova NL, Gorokhova OV, Shishkina SV. Chem. Heterocycl. Compd. 2009; 45: 1241