Synlett 2022; 33(04): 357-360
DOI: 10.1055/s-0040-1706014
cluster
Late-Stage Functionalization

Dual Ligand-Enabled Late-Stage Fujiwara–Moritani Reactions

Carlos Santiago
,
Hao Chen
,
Arup Mondal
,
Financial support has been obtained from the DFG (Emmy Noether Programme) and the Westfälische Wilhelms-Universität Münster.


Abstract

In this study, we describe the use of dual ligand-based palladium catalysts for the late-stage olefination of arenes. Building upon a method previously developed for simple arenes, a variety of complex arene substrates were functionalized. Importantly, the method uses the arene as a limiting reactant and is therefore suitable for valuable starting materials that cannot be used in excess. The regioselectivity of the transformation is controlled by the steric and electronic properties of the substrate, providing access to regioisomers that would be challenging to prepare through other synthetic approaches.

Supporting Information



Publication History

Received: 02 December 2020

Accepted after revision: 23 December 2020

Publication Date:
18 January 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Moir M, Danon JJ, Reekie TA, Kassiou M. Expert Opin. Drug Discovery 2019; 14: 1137
    • 1b Börgel J, Ritter T. Chem 2020; 6: 1877
    • 2a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 2b Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
    • 2c Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709
    • 3a Baudoin O. Angew. Chem. Int. Ed. 2020; 59: 17798
    • 3b McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 3c Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; in press DOI: 10.1002/ange.202011901.
  • 4 Mondal A, Wedi P, van Gemmeren M. Remote C–H Bond Functionalization: Methods and Strategies in Organic Synthesis . Maiti D, Guin S. Wiley-VCH; Weinheim: 2021. Chap. 7, 191
  • 5 Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879
    • 6a Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 6b Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 6c Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 7a Friis SD, Johansson MJ, Ackermann L. Nat. Chem. 2020; 12: 511
    • 7b Evano G, Theunissen C. Angew. Chem. Int. Ed. 2019; 58: 7202
    • 7c Uttry A, van Gemmeren M. Synlett 2018; 1937
    • 7d Uttry A, van Gemmeren M. Synthesis 2020; 52: 479
    • 8a Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 8b Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
    • 8c Wedi P, van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 13016
    • 8d Zhou L, Lu W. Chem. Eur. J. 2014; 20: 634
    • 9a Chen H, Wedi P, Meyer T, Tavakoli G, van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 2497
    • 9b Naksomboon K, Valderas C, Gómez-Martínez M, Álvarez-Casao Y, Fernández-Ibáñez M. Á. ACS Catal. 2017; 7: 6342
    • 9c Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K.-S, Yu J.-Q. Nature 2017; 551: 489
    • 10a Chen H, Mondal A, Wedi P, van Gemmeren M. ACS Catal. 2019; 9: 1979
    • 10b Zhao D, Xu P, Ritter T. Chem 2019; 5: 97
  • 11 Mondal A, Chen H, Flämig L, Wedi P, van Gemmeren M. J. Am. Chem. Soc. 2019; 141: 18662
  • 12 Chen H, Farizyan M, Ghiringhelli F, van Gemmeren M. Angew. Chem. Int. Ed. 2020; 59: 12213
  • 13 Ethyl (2E)-3-(3,5-Diisopropyl-4-methoxyphenyl)acrylate (2a); Typical Procedure An oven-dried 10 mL Schlenk tube was charged with Pd(OAc)2 (4.5 mg, 0.020 mmol, 10 mol%), L1 (9.4 mg, 0.040 mmol, 20 mol%), N-acetylglycine (7.0 mg, 0.060 mmol, 30 mol%), AgOAc (100.2 mg, 0.6000 mmol, 3 equiv), propofol methyl ether (38.5 mg, 0.200 mmol, 1 equiv), and HFIP (2 mL). The mixture was stirred at rt for 2 min. Ethyl acrylate (0.600 mmol, 3 equiv) was added, and the reaction vessel was tightly sealed and placed in an aluminum block with a tightly fitting recess on a magnetic stirrer at 90 °C. The mixture was stirred at 90 °C for 24 h, then allowed to cool to rt, filtered through silica, transferred into a 100 mL round-bottomed flask, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, pentane–EtOAc (80:1 to 60:1)] to give a colorless solid; yield: 35.5 mg (61%). 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, J = 16.0 Hz, 1 H), 7.20 (s, 2 H), 6.29 (d, J = 16.0 Hz, 1 H), 4.19 (q, J = 7.1 Hz, 2 H), 3.67 (s, 3 H), 3.25 (hept, J = 6.9 Hz, 2 H), 1.27 (t, J = 7.1 Hz, 3 H), 1.17 (d, J = 6.9 Hz, 12 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.2, 156.7, 144.9, 142.4, 130.7, 124.3, 116.8, 62.3, 60.4, 26.5, 23.9, 14.4 ppm. HRMS (ESI+): m/z [M + Na]+ calcd for C18H26NaO3 +: 313.1780; found: 313.1771.