Synthesis 2021; 53(05): 889-903
DOI: 10.1055/s-0040-1705969
short review

Recent Application of Chiral Aryliodine Based on the 2-Iodo­resorcinol Core in Asymmetric Catalysis

Yang Wang
,
Bing Yang
,
Xin-Xing Wu
,
Zheng-Guang Wu
We are grateful for generous financial support from the Program of High-level Talents (03083031) of Nantong University and the National Natural Science Foundation of China (21772086).


In memory of Prof. Kilian Muñiz (1970–2020).

Abstract

Chiral iodoarenes have been steadily increasing in importance in recent years, especially in enantioselective synthesis and catalysis. Since the development of the concept of chiral iodine(I/III) catalysis, the use of various chiral aryliodine frameworks has been explored in this area. This short review gives an overview of the use of chiral hypervalent iodine(I/III) reagents based on the 2-iodoresorcinol core with two attached two lactic side chains bearing ester or amide groups for the catalytic enantioselective dearomatization of phenol compounds, asymmetric oxidation of alkenes, and enantioselective α-functionalization of carbonyl compounds highlighting the excellent reactivities in terms of yield and enantioselectivity.

1 Introduction

2 Enantioselective Dearomatization of Phenol Derivatives

3 Asymmetric Oxidation of Alkenes

4 Enantioselective α-Functionalization of Carbonyl Compounds

5 Conclusion and Outlook



Publication History

Received: 28 September 2020

Accepted after revision: 08 October 2020

Publication Date:
12 November 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hypervalent Iodine Chemistry: Modern Development in Organic Synthesis. In Topics in Current Chemistry, Vol. 224. Wirth T. Springer; Berlin: 2003
    • 1b Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 1c Ladziata U, Zhdankin VV. Synlett 2007; 527
    • 1d Quideau S, Pouységu L, Deffieux D. Synlett 2008; 467
    • 1e Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 1f Uyanik M, Ishihara K. Chem. Commun. 2009; 2086
    • 1g Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 1h Brown M, Farid U, Wirth T. Synlett 2013; 24: 424

    • For selected reviews on asymmetric transformations, see:
    • 1i Parra A, Reboredo S. Chem. Eur. J. 2013; 19: 17244
    • 1j Berthiol F. Synthesis 2015; 47: 587
    • 1k Claraz A, Masson G. Org. Biomol. Chem. 2018; 16: 5386
    • 1l Flores A, Cots E, Bergès J, Muñiz K. Adv. Synth. Catal. 2019; 361: 2
    • 1m Parra A. Chem. Rev. 2019; 119: 12033
    • 2a Yusubov MS, Zhdankin VV. Resour.-Effic. Technol. 2015; 1: 49
    • 2b Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 2c Muñiz K. Acc. Chem. Res. 2018; 51: 1507
  • 3 Ochiai M. In Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. Wirth T. Springer; New York: 2003: 5-68
  • 4 Ochiai M, Takeuchi Y, Katayama T, Sueda T, Miyamoto K. J. Am. Chem. Soc. 2005; 127: 12244
  • 5 Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
  • 6 Thottumkara AP, Bowsher MS, Vinod TK. Org. Lett. 2005; 7: 2933
  • 7 Richardson RD, Page TK, Altermann S, Paradine SM, French AN, Wirth T. Synlett 2007; 538

    • Selected examples catalyzed by central chirality aryliodines:
    • 8a Murray SJ, Müller-Bunz H, Ibrahim H. Chem. Commun. 2012; 48: 6268
    • 8b Volp KA, Harned AM. Chem. Commun. 2013; 49: 3001
    • 8c Rodríguez A, Moran WJ. Synthesis 2012; 44: 1178
    • 8d Mizar P, Laverny A, El-Sherbini M, Farid U, Brown M, Malmedy F, Wirth T. Chem. Eur. J. 2014; 20: 9910

      Selected examples catalyzed by axial chirality aryliodines:
    • 9a Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 9b Dohi T, Takenaga N, Nakae T, Toyoda Y, Yamasaki M, Shiro M, Fujioka H, Maruyama A, Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
    • 9c Dohi T, Sasa H, Miyazaki K, Fujitake M, Takenaga N, Kita Y. J. Org. Chem. 2017; 82: 11954
    • 9d Bekkaye M, Masson G. Synthesis 2016; 48: 302
    • 9e Ogasawara M, Sasa H, Hu H, Amano Y, Nakajima H, Takenaga N, Nakajima K, Kita Y, Takahashi T, Dohi T. Org. Lett. 2017; 19: 4102
  • 10 Wang Y, Yuan H, Lu H, Zheng W.-H. Org. Lett. 2018; 20: 2555
  • 11 Antien K, Pouységu L, Deffieux D, Massip S, Peixoto PA, Quideau S. Chem. Eur. J. 2019; 25: 2852
    • 12a Pape AR, Kaliappan KP, Kündig EP. Chem. Rev. 2000; 100: 2917
    • 12b Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 12c Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 12d Zheng C, You S.-L. Chem 2016; 1: 830
    • 12e Xia Z.-L, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
  • 13 Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
  • 14 Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
  • 15 Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
  • 16 Uyanik M, Sasakura N, Mizuno M, Ishihara K. ACS Catal. 2017; 7: 872
  • 17 Uyanik M, Yasui T, Ishihara K. J. Org. Chem. 2017; 82: 11946
  • 18 Jain N, Xu S, Ciufolini MA. Chem. Eur. J. 2017; 23: 4542
  • 19 Zhang DY, Xu L, Wu H, Gong LZ. Chem. Eur. J. 2015; 21: 10314
  • 20 Muñiz K, Fra L. Synthesis 2017; 49: 2901
  • 21 Hashimoto T, Shimazaki Y, Omatsu Y, Maruoka K. Angew. Chem. Int. Ed. 2018; 57: 7200
    • 22a Fujita M, Okuno S, Lee HJ, Sugimura T, Okuyama T. Tetrahedron Lett. 2007; 48: 8691
    • 22b Fujita M, Yoshida Y, Miyata K, Wakisaka A, Sugimura T. Angew. Chem. Int. Ed. 2010; 49: 7068
    • 22c Fujita M, Mori K, Shimogaki M, Sugimura T. RSC Adv. 2013; 3: 17717
    • 22d Takesue T, Fujita M, Sugimura T, Akutsu H. Org. Lett. 2014; 16: 4634
  • 23 Fujita M, Mori K, Shimogaki M, Sugimura T. Org. Lett. 2012; 14: 1294
  • 24 Fujita M. Tetrahedron Lett. 2017; 58: 4409
  • 25 Shimogaki M, Fujita M, Sugimura T. Eur. J. Org. Chem. 2013; 7128
  • 26 Alhalib A, Kamouka S, Moran WJ. Org. Lett. 2015; 17: 1453
  • 27 Woerly EM, Banik SM, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13858
  • 28 Gelis C, Dumoulin A, Bekkaye M, Neuville L, Masson G. Org. Lett. 2017; 19: 278
  • 29 Banik SM, Medley JW, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 5000
  • 30 Farid U, Malmedy F, Claveau R, Albers L, Wirth T. Angew. Chem. Int. Ed. 2013; 52: 7018
  • 31 Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
  • 32 Zhou B, Haj MK, Jacobsen EN, Houk KN, Xue X.-S. J. Am. Chem. Soc. 2018; 140: 15206
  • 33 Mennie KM, Banik SM, Reichert EC, Jacobsen EN. J. Am. Chem. Soc. 2018; 140: 4797
  • 34 Sharma HA, Mennie KM, Kwan EE, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 16090
  • 35 Levin MD, Ovian JM, Read JA, Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 14831
  • 36 Molnár IG, Thiehoff C, Holland MC, Gilmour R. ACS Catal. 2016; 6: 7167
  • 37 Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2020; 59: 15069
  • 38 Haubenreisser S, Wöste TH, Martínez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
  • 39 Wöste TH, Muñiz K. Synthesis 2016; 48: 816
  • 40 Muñiz K, Barreiro L, Romero RM, Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
    • 41a Adam W, Fell RT, Stegmann VR, Saha-Moller CR. J. Am. Chem. Soc. 1998; 120: 708
    • 41b Janey JM. Angew. Chem. Int. Ed. 2005; 44: 4292
    • 41c Xu L.-W, Li L, Shi Z.-H. Adv. Synth. Catal. 2010; 352: 243
    • 41d Smith AM. R, Hii KK. Chem. Rev. 2011; 111: 1637
    • 42a Altermann SM, Richardson RD, Page TK, Schmidt RK, Holland E, Mohammed U, Paradine SM, French AN, Richter C, Bahar AM, Witulski B, Wirth T. Eur. J. Org. Chem. 2008; 5315
    • 42b Yu J, Cui J, Hou X.-S, Liu S.-S, Gao W.-C, Jiang S, Tian J, Zhang C. Tetrahedron: Asymmetry 2011; 22: 2039
    • 42c Guilbault A.-A, Basdevant B, Wanie V, Legault CY. J. Org. Chem. 2012; 77: 11283
    • 42d Guilbault A.-A, Legault CY. ACS Catal. 2012; 2: 219
    • 42e Brenet S, Minozzi C, Clarens B, Amiri L, Berthiol F. Synthesis 2015; 47: 3859
    • 42f Beaulieu S, Legault CY. Chem. Eur. J. 2015; 21: 11206
    • 42g Levitre G, Dumoulin A, Retailleau P, Panossian A, Leroux FR, Masson G. J. Org. Chem. 2017; 82: 11877
  • 43 Basdevant B, Legault CY. Org. Lett. 2015; 17: 4918
  • 44 Wu H, He Y.-P, Xu L, Zhang D.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2014; 53: 3466
  • 45 Sreenithya A, Patel C, Hadad CM, Sunoj RB. ACS Catal. 2017; 7: 4189
  • 46 Feng Y, Huang R, Hu L, Xiong Y, Coeffard V. Synthesis 2016; 48: 2637
  • 47 Pluta R, Krach PE, Cavallo L, Falvienne L, Rueping M. ACS Catal. 2018; 8: 2582