Synthesis 2021; 53(05): 861-878
DOI: 10.1055/s-0040-1705966
short review

Recent Developments in Heck-Type Reaction of Unactivated Alkenes and Alkyl Electrophiles

Shuangqiu Gao
a  Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China   Email: [email protected]
,
Lili Shi
b  State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. of China   Email: [email protected]
,
Le Chang
c  WuXi AppTec (Wuhan) Co. Ltd., Wuhan East Lake High-tech Development Zone, Wuhan 430075, P. R. of China
,
Binglin Wang
c  WuXi AppTec (Wuhan) Co. Ltd., Wuhan East Lake High-tech Development Zone, Wuhan 430075, P. R. of China
,
Junkai Fu
a  Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China   Email: [email protected]
b  State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. of China   Email: [email protected]
› Author Affiliations
We gratefully acknowledge the National Natural Science Foundation of China (21702027 and 21971034) and Fundamental Research Funds for the Central Universities (2412019FZ017).


Abstract

The Mizoroki–Heck reaction is considered as one of the most ingenious and widely used methods for constructing C–C bonds. This reaction mainly focuses on activated olefins (styrenes, acrylates, or vinyl ethers) and aryl/vinyl (pseudo) halides. In comparison, the studies on unactivated alkenes and alkyl electrophiles are far less due to the low reactivity, poor selectivity, as well as competitive β-H elimination. In the past years, a growing interest has thus been devoted and significant breakthroughs have been achieved in the employment of unactivated alkenes and alkyl electrophiles as the reaction components, and this type of coupling is called as Heck-type or Heck-like reaction, which distinguishes from the traditional Heck reaction. Herein, we give a brief summary on Heck-type reaction between unactivated alkenes and alkyl electrophlies, covering its initial work, recent advancements, and mechanistic discussions.

1 Introduction

2 Intramolecular Heck-Type Reaction of Unactivated Alkenes and Alkyl Electrophiles

2.1 Cobalt-Catalyzed Intramolecular Heck-Type Reaction

2.2 Palladium-Catalyzed Intramolecular Heck-Type Reaction

2.3 Nickel-Catalyzed Intramolecular Heck-Type Reaction

2.4 Photocatalysis and Multimetallic Protocol for Intramolecular Heck-Type Reaction

3 Intermolecular Heck-Type Reaction of Unactivated Alkenes and Alkyl Electrophiles

3.1 Electrophilic Trifluoromethylating Reagent as Reaction Partners

3.2 Alkyl Electrophiles as Reaction Partners

4 Oxidative Heck-Type Reaction of Unactivated Alkenes and Alkyl Radicals

5 Conclusions and Outlook



Publication History

Received: 15 September 2020

Accepted after revision: 03 October 2020

Publication Date:
10 November 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
  • 2 Heck RF, Nolley JP. J. Org. Chem. 1972; 37: 2320
  • 3 Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
    • 4a Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2
    • 4b de Meijere A, Meyer FE. Angew. Chem. Int. Ed. 1995; 33: 2379
    • 4c Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 4d Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
    • 4e Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 4f Polshettiwar V, Molnár Á. Tetrahedron 2007; 63: 6949
    • 4g Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
    • 4h Ruan J, Xiao J. Acc. Chem. Res. 2011; 44: 614
    • 4i McCartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122
    • 4j Sigman MS, Werner EW. Acc. Chem. Res. 2012; 45: 874
    • 4k Wang S.-S, Yang G.-Y. Catal. Sci. Technol. 2016; 6: 2862
    • 4l Roy D, Uozumi Y. Adv. Synth. Catal. 2018; 360: 602
    • 5a Zapf A, Beller M. Top. Catal. 2002; 19: 101
    • 5b Polshettiwar V, Molnár Á. Tetrahedron 2007; 63: 6949
  • 6 Whitcombe NJ, Hii KK, Gibson SE. Tetrahedron 2001; 57: 7449
    • 7a Mabic S. Synthesis 1999; 1127
    • 7b Doucet H, Santelli M, Fall Y, Berthiol F. Synthesis 2007; 1683
    • 8a Deb A, Bag S, Kancherla R, Maiti D. J. Am. Chem. Soc. 2014; 136: 13602
    • 8b Seth K, Bera M, Brochetta M, Agasti S, Das A, Gandini A, Porta A, Zanoni G, Maiti D. ACS Catal. 2017; 7: 7732
    • 8c Maity S, Dolui P, Kancherla R, Maiti D. Chem. Sci. 2017; 8: 5181
    • 8d Deb A, Hazra A, Peng Q, Paton RS, Maiti D. J. Am. Chem. Soc. 2017; 139: 763
    • 8e Agasti S, Mondal B, Achar TK, Sinha S, Sarala Suseelan A, Szabo KJ, Schoenebeck F, Maiti D. ACS Catal. 2019; 9: 9606
    • 8f Achar TK, Zhang X, Mondal R, Shanavas MS, Maiti S, Maity S, Pal N, Paton RS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10353
  • 9 Deb A, Maiti D. Eur. J. Org. Chem. 2017; 1239
    • 10a Frisch AC, Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
    • 10b Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
    • 10c Tang S, Liu K, Liu C, Lei A. Chem. Soc. Rev. 2015; 44: 1070
    • 10d Nishikata T, Ishikawa S. Synlett 2015; 26: 716
    • 10e Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 10f Kurandina D, Chuentragool P, Gevorgyan V. Synthesis 2019; 51: 985
    • 10g Gevorgyan V, Chuentragool P, Kurandina D. Angew.Chem. Int. Ed. 2019; 58: 11586
    • 10h Cheng W.-M, Shang R. ACS Catal. 2020; 10: 9170
  • 12 Fujioka T, Nakamura T, Yorimitsu H, Oshima K. Org. Lett. 2002; 4: 2257
    • 13a Walling C, Cioffari A. J. Am. Chem. Soc. 1972; 94: 6059
    • 13b Pintér B, De Proft F, Van Speybroeck V, Hemelsoet K, Waroquier M, Chamorro E, Veszprémi T, Geerlings P. J. Org. Chem. 2007; 72: 348
  • 14 Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Miyoshi K. J. Am. Chem. Soc. 2006; 128: 8068
  • 15 Bräse S, de Meijere A. In Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; Weinheim: 1998
  • 16 Kwiatkowski MR, Alexanian EJ. Acc. Chem. Res. 2019; 52: 1134
  • 17 Firmansjah L, Fu GC. J. Am. Chem. Soc. 2007; 129: 11340
  • 18 Zhou W, An G, Zhang G, Han J, Pan Y. Org. Biomol. Chem. 2011; 9: 5833
  • 19 Matsude A, Hirano K, Miura M. Adv. Synth. Catal. 2020; 362: 518
  • 20 Bloome KS, Alexanian EJ. J. Am. Chem. Soc. 2010; 132: 12823
  • 21 Bloome KS, McMahen RL, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 20146
  • 22 Venning AR. O, Kwiatkowski MR, Roque Peña JE, Lainhart BC, Guruparan AA, Alexanian EJ. J. Am. Chem. Soc. 2017; 139: 11595
  • 23 Clark AJ. Chem. Soc. Rev. 2002; 31: 1
  • 24 Shindoh N, Takemoto Y, Takasu K. Chem. Eur. J. 2009; 15: 12168
  • 25 Harris MR, Konev MO, Jarvo ER. J. Am. Chem. Soc. 2014; 136: 7825
  • 26 Kwiatkowski M, Alexanian EJ. Angew. Chem. Int. Ed. 2018; 57: 16857
  • 28 Millán A, Álvarez de Cienfuegos L, Miguel D, Campaña AG, Cuerva JM. Org. Lett. 2012; 14: 5984
  • 29 Gansäuer A, Klatte M, Brändle GM, Friedrich J. Angew. Chem. Int. Ed. 2012; 51: 8891
  • 30 Justicia J, Jiménez T, Morcillo SP, Cuerva JM, Oltra JE. Tetrahedron 2009; 65: 10837
  • 31 Barrero AF, Rosales A, Cuerva JM, Oltra JE. Org. Lett. 2003; 5: 1935
  • 32 Kaga A, Chiba S. ACS Catal. 2017; 7: 4697
  • 33 Weiss ME, Kreis LM, Lauber A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11125
    • 34a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 34b Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 35a Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 35b Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
  • 36 Parsons AT, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9120
  • 37 Xu J, Fu Y, Luo D.-F, Jiang Y.-Y, Xiao B, Liu Z.-J, Liu L. J. Am. Chem. Soc. 2011; 133: 15300
  • 38 Wang X, Ye Y, Zhang S, Feng J, Xu Y, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 16410
  • 39 Shimizu R, Egami H, Hamashima Y, Sodeoka M. Angew. Chem. Int. Ed. 2012; 51: 4577
  • 40 Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2016; 55: 8740
  • 41 Sawada H. Chem. Rev. 1996; 96: 1779
  • 42 Iqbal N, Choi S, Kim E, Cho EJ. J. Org. Chem. 2012; 77: 11383
  • 43 Yu C, Iqbal N, Park S, Cho EJ. Chem. Commun. 2014; 50: 12884
  • 44 Beniazza R, Molton F, Duboc C, Tron A, McClenaghan ND, Lastécouères D, Vincent J.-M. Chem. Commun. 2015; 51: 9571
  • 45 Kurandina D, Rivas M, Radzhabov M, Gevorgyan V. Org. Lett. 2018; 20: 357
  • 46 Tang C, Zhang R, Zhu B, Fu J, Deng Y, Tian L, Guan W, Bi X. J. Am. Chem. Soc. 2018; 140: 16929
    • 47a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 47b Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
  • 48 Moscatelli D, Dossi M, Cavallotti C, Storti G. J. Phys. Chem. A 2011; 115: 52
  • 49 Deng Y, Zhao C, Zhou Y, Wang H, Li X, Cheng G.-J, Fu J. Org. Lett. 2020; 22: 3524
    • 50a Wiese S, Badiei YM, Gephart RT, Mossin S, Varonka MS, Melzer MM, Meyer K, Cundari TR, Warren TH. Angew. Chem. Int. Ed. 2010; 49: 8850
    • 50b Karimi B, Behzadnia H, Elhamifar D, Akhavan P, Esfahani F, Zamani A. Synthesis 2010; 9: 1399
    • 50c Su Y, Jiao N. Current Organic Chemistry 2011; 15: 3362
    • 50d Gephart RT, Huang DL, Aguila MJ. B, Schmidt G, Shahu A, Warren TH. Angew. Chem. Int. Ed. 2012; 51: 6488
    • 50e Gephart RT, McMullin CL, Sapiezynski NG, Jang ES, Aguila MJ. B, Cundari TR, Warren TH. J. Am. Chem. Soc. 2012; 134: 17350
  • 51 Meng L, Wu K, Liu C, Lei A. Chem. Commun. 2013; 49: 5853
  • 52 Wei Y, Deb I, Yoshikai N. J. Am. Chem. Soc. 2012; 134: 9098
  • 53 Wu X, Riedel J, Dong VM. Angew. Chem. Int. Ed. 2017; 56: 11589