Synthesis 2021; 53(17): 3137-3143
DOI: 10.1055/s-0040-1705962
special topic
Bond Activation – in Honor of Prof. Shinji Murai

CsF-Catalyzed Fluoroacylation of Tetrafluoroethylene Using Acyl Fluorides for the Synthesis of Pentafluoroethyl Ketones

Naoyoshi Ishida
,
Hiroaki Iwamoto
,
Denise Eimi Sunagawa
,
Masato Ohashi
,
Sensuke Ogoshi
This work was supported by Japan Society for the Promotion of Science (JSPS KAKENHI) grants JP16H02276, JP17H03057, JP20K15278, and JP19J10485.


Abstract

A catalytic method for the synthesis of pentafluoroethyl ketones­ has been developed. The cesium fluoride catalyst can be used to convert acyl fluorides into the pentafluoroethyl ketones under tetrafluoroethylene pressure without generating stoichiometric quantities of chemical waste. Mechanistic studies suggest that high reaction temperature is crucial for the ketone to be the major product.

Supporting Information



Publication History

Received: 08 September 2020

Accepted after revision: 30 September 2020

Article published online:
28 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 New address: Department of Chemistry, Faculty of Science, Osaka Prefecture University, Sakai, 599-8531, Japan.
    • 2a Chambers RD. Fluorine in Organic Chemistry . Blackwell; Oxford: 2004
    • 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2c Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed. Wiley-VCH; Weinheim: 2013
    • 2d Wang J, Sánchez-Roselló M, Aceña JL, Del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 2e Prchalová E, Štěpanek O, Smrček S, Kotora M. Future Med. Chem. 2014; 6: 1201
    • 2f Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 3a Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 3b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 3c Barata-Vallejo S, Lantano B, Postigo A. Chem. Eur. J. 2014; 20: 16806
    • 3d Yerien DE, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 8398
  • 4 Nenajdenko VG, Muzalevskiy VM, Shastin AV. Chem. Rev. 2015; 115: 973
  • 5 Brickl R, Eberhardt H, Appel K.-R, Lechner U, Merk W. DE 2616479, 1977
  • 6 Tanaka T, Nishimura Y, Shimada Y, Ariyoshi M, Kamesawa M, Kimura T, Tanaka T. JP 2016204361, 2016
    • 7a Angelastro MR, Baugh LE, Bey P, Burkhart JP, Chen TM, Durham SL, Hare CM, Huber EW, Janusz MJ, Koehl JR, Marquart AL, Mehdi S, Peet NP. J. Med. Chem. 1994; 37: 4538
    • 7b Ogilvie W, Bailey M, Poupart MA, Abraham A, Bhavsar A, Bonneau P, Bordeleau J, Bousquet Y, Chabot C, Duceppe JS, Fazal G, Goulet S, Grand-Maître C, Guse I, Halmos T, Lavallée P, Leach M, Malenfant E, O’Meara J, Plante R, Plouffe C, Poirier M, Soucy F, Yoakim C, Déziel R. J. Med. Chem. 1997; 40: 4113

      For a review of fluorinated ketones, see:
    • 8a Bégué JP, Bonnet-Delpon D. Tetrahedron 1991; 47: 3207

    • For selected examples for the synthesis of pentafluoroethyl ketones using pentafluoroethyl electrophiles, see:
    • 8b Burton DJ, Headley JA. J. Fluorine Chem. 1981; 18: 323
    • 8c Jiang XD, Kakuda KI, Matsukawa S, Yamamichi H, Kojima S, Yamamoto Y. Chem. Asian J. 2007; 2: 314
    • 8d Yamazaki T, Terajima T, Kawasaki-Taskasuka T. Tetrahedron 2008; 64: 2419
    • 8e Kelly CB, Mercadante MA, Carnaghan ER, Doherty MJ, Fager DC, Hauck JJ, MacInnis AE, Tilley LJ, Leadbeater NE. Eur. J. Org. Chem. 2015; 4071

      For a review for fluorinated organometallics, see:
    • 9a Burton DJ, Yang ZY. Tetrahedron 1992; 48: 189

    • For selected examples for the synthesis of pentafluoroethyl ketones using pentafluoroethyl nucleophiles, see:
    • 9b Gassman PG, O’Reilly NJ. J. Org. Chem. 1987; 52: 2481
    • 9c Fujiu M, Hashimoto R, Nakamura Y, Aikawa K, Ito S, Mikami K. Chem. Eur. J. 2014; 20: 2382
  • 10 Panferova LI, Miloserdov FM, Lishchynskyi A, Martínez Belmonte M, Benet-Buchholz J, Grushin VV. Angew. Chem. Int. Ed. 2015; 54: 5218
    • 11a Acerboni G, Beukes JA, Jensen NR, Hjorth J, Myhre G, Nielsen CJ, Sundet JK. Atmos. Environ. 2001; 35: 4113
    • 11b UNEP, 1993 Report of the Technology and Economic Assessment Panel.
    • 12a Chambers RD, Musgrave WK. R, Savory J. J. Chem. Soc. 1961; 3779
    • 12b Petrov VA, Krespan CG. WO 9504020, 1995
    • 12c Petrov VA, Krespan CG. J. Org. Chem. 1996; 61: 9605

      For selected examples of fluoroalkylation reactions of aromatic compounds, see:
    • 13a Barlow MG, Haszeldine RN, Kershaw MJ. Tetrahedron 1975; 31: 1649
    • 13b Saijo H, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2014; 136: 15158
    • 13c Li L, Ni C, Xie Q, Hu M, Wang F, Hu J. Angew. Chem. Int. Ed. 2017; 56: 9971
    • 13d Ohashi M, Adachi T, Ishida N, Kikushima K, Ogoshi S. Angew. Chem. Int. Ed. 2017; 56: 11911
    • 13e Xing B, Li L, Ni C, Hu J. Chin. J. Chem. 2019; 37: 1131
    • 13f Andrella NO, Xu N, Gabidullin BM, Ehm C, Baker RT. J. Am. Chem. Soc. 2019; 141: 11506

      For selected examples of fluoroakylation reactions of fluoroformates or acyl fluorides bearing a perfluoroalkyl moiety, see:
    • 14a Galimberti M, Fontana G, Resnati G, Navarrini W. J. Fluorine Chem. 2005; 126: 1578
    • 14b Fenichev IM, Berenblit VV, Bispen TA, Lebedev NV, Moldavskii DD. Russ. J. Appl. Chem. 2013; 86: 1243
  • 15 Ohashi M, Ishida N, Ando K, Hashimoto Y, Shigaki A, Kikushima K, Ogoshi S. Chem. Eur. J. 2018; 24: 9794
  • 16 Knunyants IL, Igumnov SM. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1982; 31: 192 ; Knunyants, I. L.; Igumnov, S. M. Akad. Nauk SSSR, Ser. Khim. 1982, 204
  • 17 For details of DFT calculations of the energies and structures in the transition states, see the Supporting Information.
  • 18 Jiang X, Meyer D, Baran D, Cortés González MA, Szabó KJ. J. Org. Chem. 2020; 85: 8311
  • 19 Ichitsuka T, Fujita T, Ichikawa J. ACS Catal. 2015; 5: 5947
  • 20 Fujiu M, Negishi K, Guang J, Williard PG, Kuroki S, Mikami K. Dalton Trans. 2015; 19464
  • 21 Ichitsuka T, Fujita T, Arita T, Ichikawa J. Angew. Chem. Int. Ed. 2014; 53: 7564