Synthesis 2021; 53(04): 682-687
DOI: 10.1055/s-0040-1705956
psp

Protocol for Palladium/N-Heterocyclic Carbene-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation

Peng Lei
a  College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, P. R. of China   Email: [email protected]
b  Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. of China
c  Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA   Email: [email protected]
,
Guangchen Li
c  Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA   Email: [email protected]
,
Yun Ling
b  Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. of China
,
Jie An
d  Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. of China
,
Steven P. Nolan
e  Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
,
c  Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA   Email: [email protected]
› Author Affiliations
Rutgers University and the NSF (CAREER CHE-1650766) are gratefully acknowledged for support. Supplement funding for this project was provided by the Rutgers University – Newark Chancellor’s Research Office. The Bruker 500 MHz spectrometer was supported by the NSF-MRI grant (CHE-1229030). P.L. thanks Natural Science Basic Research Program of Shaanxi (Program No. 2020JQ-238), the Young Talent Fund of University Association for Science and Technology in Shaanxi (Program No. 2019-02-02). We gratefully acknowledge VLAIO (SBO project CO2PERATE), the Special Research Fund (BOF) of Ghent University is also acknowledged for starting and project grants to S.P.N. We thank the National Natural Science Foundation of China (No. 22077137, Y.L.).


Abstract

Amides are among the most important and ubiquitous functional groups in organic chemistry and process development. In this Practical Synthetic Procedure, a protocol for the Suzuki–Miyaura cross-coupling of amides by selective N–C(O) bond activation catalyzed by commercially available, air- and moisture-stable palladium/N-heterocyclic carbene (NHC) complexes is described. The procedure described involves [Pd(IPr)(cin)Cl] [IPr = 2,6-(diisopropylphenyl)imidazol-2-ylidene, cin = cinnamyl] at 0.10 mol% at room temperature and is performed on decagram scale. Furthermore, a procedure for the synthesis of amide starting materials is accomplished via selective N-tert-butoxycarbonylation, which is the preferred method over N-acylation. The present protocol carries advantages of operational simplicity, commercial availability of catalysts, and excellent conversions at low catalyst loadings. The method is generally useful for activation of N–C(O) amide bonds in a broad spectrum of amide precursors. The protocol should facilitate the implementation of amide cross-coupling reactions.

Supporting Information



Publication History

Received: 28 August 2020

Accepted after revision: 26 September 2020

Publication Date:
12 November 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science. Wiley-VCH; New York: 2003

    • For selected reviews on amide N–C(O) bond activation, see:
    • 2a Meng G, Szostak M. Eur. J. Org. Chem. 2018; 2352
    • 2b Liu C, Szostak M. Org. Biomol. Chem. 2018; 16: 7998
    • 2c Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
    • 2d Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
    • 2e Bourne Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2019; 25: 2663
    • 2f Chaudhari MB, Gnanaprakasam B. Chem. Asian J. 2019; 14: 76
  • 3 For a review on acyl-cross-coupling, see: Buchspies J, Szostak M. Catalysts 2019; 9: 53
  • 4 For studies on amide bond destabilization, see: Liu C, Shi S, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2018; 20: 7771

    • For lead references on amide bonds in drug discovery and polymer chemistry, see:
    • 5a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 5b Kaspar AA, Reichert JM. Drug Discov. Today 2013; 18: 807
    • 5c Marchildon K. Macromol. React. Eng. 2011; 5: 22
    • 5d Brunton L, Chabner B, Knollman B. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. MacGraw-Hill; New York: 2010

    • For selected recent examples of amide bonds in synthetic chemistry, see:
    • 5e Barger CJ, Dicken RD, Weidner VL, Motta A, Lohr TL, Marks TJ. J. Am. Chem. Soc. 2020; 142: 8019
    • 5f Wei T, Lu S, Sun J, Xu Z, Yang X, Wang F, Ma Y, Shi YS, Chen X. J. Am. Chem. Soc. 2020; 142: 3806
    • 5g Gonçalves CR, Lemmerer M, Teskey CJ, Adler P, Kaiser D, Maryasin B, González L, Maulide N. J. Am. Chem. Soc. 2019; 141: 18437
    • 5h Derosa J, Kleinmans R, Tran VT, Karunananda MK, Wisniewski SR, Eastgate MD, Engle KM. J. Am. Chem. Soc. 2018; 140: 17878
    • 5i Chen J, Xia Y, Lee S. Org. Lett. 2020; 22: 3504
    • 5j Sharma S, Buchbinder NW, Braje WM, Handa S. Org. Lett. 2020; 22: 5737

      For selected studies on amide N–C(O) cross-coupling, see:
    • 6a Hie L, Nathel NF. F, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
    • 6b Meng G, Szostak M. Org. Lett. 2015; 17: 4364
    • 6c Meng G, Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
    • 6d Ni S, Zhang W, Mei H, Han J, Pan Y. Org. Lett. 2017; 19: 2536
    • 6e Yue H, Guo L, Liao HH, Cai Y, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282
    • 6f For a comprehensive list, refs. 2 and 3.

      For reviews on Pd–NHCs in amide N–C(O) activation, see:
    • 7a Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
    • 7b Vemula SR, Chhoun MR, Cook GR. Molecules 2019; 24: 215

      For excellent reviews on the impact of synthetic chemistry on medicinal chemistry, see:
    • 8a Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
    • 8b Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383

      For studies using different classes of [Pd–NHCs], see:
    • 9a [Pd(NHC)(allyl)Cl] complexes: Lei P, Meng G, Szostak M. ACS Catal. 2017; 7: 1960
    • 9b [Pd(NHC)(ind)Cl] complexes: Lei P, Meng G, Shi S, Ling Y, An J, Szostak R, Szostak M. Chem. Sci. 2017; 8: 6525
    • 9c [Pd–PEPPSI] complexes: Lei P, Meng G, Ling Y, An J, Szostak M. J. Org. Chem. 2017; 82: 6638
    • 9d [Pd(NHC)(acac)Cl] complexes: Zhou T, Li G, Nolan SP, Szostak M. Org. Lett. 2019; 21: 3304
    • 10a Marion N, Navarro O, Mei J, Stevens ED, Scott NM, Nolan SP. J. Am. Chem. Soc. 2006; 128: 4101
    • 10b Navarro O, Marion N, Mei J, Nolan SP. Chem. Eur. J. 2006; 12: 5142
    • 10c Marion N, Nolan SP. Acc. Chem. Res. 2008; 41: 1440
  • 11 Lei P, Ling Y, An J, Nolan SP, Szostak M. Adv. Synth. Catal. 2019; 361: 5654
  • 12 For a mechanism of the Suzuki–Miyaura N–C(O) cross-coupling of amides, see: Li G, Lei P, Szostak M, Casals E, Poater A, Cavallo L, Nolan SP. ChemCatChem 2018; 10: 3096
    • 14a [Pd–PEPPSI] complexes: Froese RD. J, Lombardi C, Pompeo M, Rucker RP, Organ MG. Acc. Chem. Res. 2017; 50: 2244
    • 14b [Pd(NHC)(ind)Cl] complexes: Melvin PR, Nova A, Balcells D, Dai W, Hazari N, Hruszkewycz DP, Shah HP, Tudge MT. ACS Catal. 2015; 5: 5596
    • 14c [Pd(NHC)(μ-Cl)Cl]2 complexes: Zhou T, Ma S, Nahra F, Obled AM. C, Poater A, Cavallo L, Cazin CS. J, Nolan SP, Szostak M. iScience 2020; 23: 101377
  • 15 For studies on ester C(acyl)–O activation, see: Li G, Shi S, Lei P, Szostak M. Adv. Synth. Catal. 2018; 360: 1538

    • For representative studies, see:
    • 16a Li G, Szostak M. Nat. Commun. 2018; 9: 4165
    • 16b Li G, Ji CL, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
    • 16c Li G, Lei P, Szostak M. Org. Lett. 2018; 20: 5622
    • 16d For a study using Co-catalysis, see: Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043
    • 16e For a study using Ni catalysis, see ref. 6a
    • 16f For a transition-metal-free study, see: Verho O, Lati MP, Oschmann M. J. Org. Chem. 2018; 83: 4464
  • 17 Meng G, Szostak M. Org. Lett. 2018; 20: 6789
  • 18 Li G, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Catal. Sci. Technol. 2020; 10: 710