Synthesis 2021; 53(01): 30-50
DOI: 10.1055/s-0040-1705918
review

Recent Progress and Applications of Transition-Metal-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution

Ricardo Molina Betancourt
a  CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University, 11 Rue Pierre et Marie Curie, 75005 Paris, France   Email: phannarath.phansavath@chimieparistech.psl.eu   Email: virginie.vidal@chimieparistech.psl.eu
,
Pierre-Georges Echeverria
b  Minakem Recherche, 145 Chemin des Lilas, 59310 Beuvry-la-Forêt, France
,
Tahar Ayad
a  CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University, 11 Rue Pierre et Marie Curie, 75005 Paris, France   Email: phannarath.phansavath@chimieparistech.psl.eu   Email: virginie.vidal@chimieparistech.psl.eu
,
Phannarath Phansavath
a  CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University, 11 Rue Pierre et Marie Curie, 75005 Paris, France   Email: phannarath.phansavath@chimieparistech.psl.eu   Email: virginie.vidal@chimieparistech.psl.eu
,
a  CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University, 11 Rue Pierre et Marie Curie, 75005 Paris, France   Email: phannarath.phansavath@chimieparistech.psl.eu   Email: virginie.vidal@chimieparistech.psl.eu
› Author Affiliations
We thank the CNRS (Centre National de la Recherche Scientifique) and the MENESR (Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche) for financial support. R.M.B. is grateful to the MENESR for a grant (2019-2022).


Abstract

Based on the ever-increasing demand for enantiomerically pure compounds, the development of efficient, atom-economical, and sustainable methods to produce chiral alcohols and amines is a major concern. Homogeneous asymmetric catalysis with transition-metal complexes including asymmetric hydrogenation (AH) and transfer hydrogenation (ATH) of ketones and imines through dynamic kinetic resolution (DKR) allowing the construction of up to three stereogenic centers is the main focus of the present short review, emphasizing the development of new catalytic systems combined to new classes of substrates and their applications as well.

1 Introduction

2 Asymmetric Hydrogenation via Dynamic Kinetic Resolution

2.1 α-Substituted Ketones

2.2 α-Substituted β-Keto Esters and Amides

2.3 α-Substituted Esters

2.4 Imine Derivatives

3 Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution

3.1 α-Substituted Ketones

3.2 α-Substituted β-Keto Esters, Amides, and Sulfonamides

3.3 α,β-Disubstituted Cyclic Ketones

3.4 β-Substituted Ketones

3.5 Imine Derivatives

4. Conclusion



Publication History

Received: 19 June 2020

Accepted after revision: 22 July 2020

Publication Date:
06 October 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a The Handbook of Homogeneous Hydrogenation, Vol. 1. de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007
    • 1b Modern Reduction Methods . Andersson PG, Munslow IJ. Wiley-VCH; Weinheim: 2008

    • For comprehensive reviews and chapters on asymmetric hydrogenation (AH), see:
    • 1c Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
    • 1d Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
    • 1e Genêt J.-P. Acc. Chem. Res. 2003; 36: 908
    • 1f Blaser H.-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Adv. Synth. Catal. 2003; 345: 103
    • 1g Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
    • 1h Shang G, Li W, Zhang X. Catalytic Asymmetric Synthesis, 3rd ed. Ojima I. John Wiley & Sons; New York: 2010: 343
    • 1i Xie JH, Zhu SF, Zhou QL. Chem. Rev. 2011; 111: 1713
    • 1j Gopalaiah K, Kagan HB. Chem. Rev. 2011; 111: 4599
    • 1k Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 1l Chen Q.-A, Ye Z.-S, Duan Y, Zhou Y.-G. Chem. Soc. Rev. 2013; 42: 497
    • 1m Hamada Y. Chem. Rec. 2014; 14: 235
    • 1n Li Y.-Y, Yu S.-L, Shen W.-Y, Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
    • 1o Xie J.-H, Bao D.-H, Zhou Q.-L. Synthesis 2015; 47: 460
    • 1p Zhang Z, Butt NA, Zhang W. Chem. Rev. 2016; 116: 14769
    • 1q Li W, Lu B, Zhang Z. Chem. Rec. 2016; 16: 2506
    • 1r Mashima K, Higashida K, Iimuro A, Nagae H, Kita Y. Chem. Rec. 2016; 16: 2585
    • 1s Luo Y.-E, He Y.-M, Fan Q.-H. Chem. Rec. 2016; 16: 2697
    • 1t Ohkuma T, Arai N. Chem. Rec. 2016; 16: 2801
    • 1u Imamoto T. Chem. Rec. 2016; 16: 2659
    • 1v Xie X, Lu B, Li W, Zhang Z. Coord. Chem. Rev. 2018; 355: 39
    • 1w Seo CS. G, Morris RH. Organometallics 2019; 38: 47

      For comprehensive reviews and chapters on asymmetric transfer hydrogenation (ATH), see:
    • 2a Zassinovich G, Mestroni G, Gladiali S. Chem. Rev. 1992; 92: 1051
    • 2b de Graauw CF, Peters JA, van Bekkum H, Huskens J. Synthesis 1994; 1007
    • 2c Noyori R, Hashiguchi S. Acc. Chem. Res. 1997; 30: 97
    • 2d Palmer MJ, Wills M. Tetrahedron: Asymmetry 1999; 10: 2045
    • 2e Pàmies O, Bäckvall J.-E. Chem. Eur. J. 2001; 7: 5052
    • 2f Everaere K, Mortreux A, Carpentier J.-F. Adv. Synth. Catal. 2003; 345: 67
    • 2g Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
    • 2h Samec JS. M, Bäckvall J.-E, Andersson PG, Brandt P. Chem. Soc. Rev. 2006; 35: 237
    • 2i Ikariya T, Blacker AJ. Acc. Chem. Res. 2007; 40: 1300
    • 2j Blacker AJ. The Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007: 1215
    • 2k Wang C, Wu X, Xiao J. Chem. Asian J. 2008; 3: 1750
    • 2l Ikariya T. Bull. Chem. Soc. Jpn. 2011; 84: 1
    • 2m Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
    • 2n Bartoszewicz A, Ahlsten N, Martín-Matute B. Chem. Eur. J. 2013; 19: 7274
    • 2o Slagbrand T, Lundberg H, Adolfsson H. Chem. Eur. J. 2014; 20: 16102
    • 2p Štefane B, Požgan F. Catal. Rev. 2014; 56: 82
    • 2q Ito J.-I, Nishiyama H. Tetrahedron Lett. 2014; 55: 3133
    • 2r Cotarca L, Verzini M, Volpicelli R. Chim. Oggi 2014; 32: 36
    • 2s Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 2t Foubelo F, Nájera C, Yus M. Tetrahedron: Asymmetry 2015; 26: 769
    • 2u Nedden HG, Zanotti-Gerosa A, Wills M. Chem. Rec. 2016; 16: 2623
    • 2v Štefane B, Požgan F. Top. Curr. Chem. 2016; 18: 374
    • 2w Ayad T, Phansavath P, Ratovelomanana-Vidal V. Chem. Rec. 2016; 16: 2754
    • 2x Matuška O, Kindl M, Kačer P. New Advances in Hydrogenation Process . Ravanchi TM. InTech; Croatia: 2017: 37
    • 2y Milner L, Talavera G, Nedden HG. Chim. Oggi 2017; 35: 37
    • 2z Matsunami A, Kayaki Y. Tetrahedron Lett. 2018; 59: 504
    • 2aa Whittlesey MK. Science of Synthesis: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 1 . Nolan SP, Cazin CS. J. Georg Thieme Verlag; Stuttgart: 2018: 285
    • 2ab Zhang Z, Butt NA, Zhou M, Liu D, Zhang W. Chin. J. Chem. 2018; 36: 443
    • 2ac Talavera G, Santana Fariña A, Zanotti-Gerosa A, Nedden HG. Top. Organomet. Chem. 2019; 65: 73

      For previous comprehensive reviews covering this topic, see:
    • 3a Noyori R, Tokunaga M, Kitamura M. Bull. Chem. Soc. Jpn. 1995; 68: 36
    • 3b Caddick S, Jenkins K. Chem. Soc. Rev. 1996; 25: 447
    • 3c Ward RS. Tetrahedron: Asymmetry 1995; 6: 1475
    • 3d Sturmer R. Angew. Chem. Int. Ed. Engl. 1997; 36: 1173
    • 3e El Gihani MT, Williams JM. J. Curr. Opin. Chem. Biol. 1999; 3: 11
    • 3f Ratovelomanana-Vidal V, Genêt J.-P. Can. J. Chem. 2000; 78: 846
    • 3g Huerta FF, Minidis AB. E, Bäckvall J.-E. Chem. Soc. Rev. 2001; 30: 321
    • 3h Faber K. Chem. Eur. J. 2001; 7: 5005
    • 3i Pàmies O, Bäckvall J.-E. Chem. Rev. 2003; 103: 3247
    • 3j Pellissier H. Tetrahedron 2003; 59: 8291
    • 3k Turner NJ. Curr. Opin. Chem. Biol. 2004; 8: 114
    • 3l Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
    • 3m Martín-Matute B, Bäckvall J.-E. Curr. Opin. Chem. Biol. 2007; 11: 226
    • 3n Pellissier H. Tetrahedron 2008; 64: 1563
    • 3o Pellissier H. Tetrahedron 2011; 67: 3769
    • 3p Xie J.-H, Zhou Q.-L. Aldrichimica Acta 2015; 48: 33
    • 3q Echeverria P.-G, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2016; 48: 2523
    • 3r Bhat V, Welin ER, Guo X, Stoltz BM. Chem. Rev. 2017; 117: 4528
  • 4 Noyori R, Ikeda T, Ohkuma T, Widhalm M, Kitamura M, Takaya H, Akutagawa S, Sayo N, Saito T. J. Am. Chem. Soc. 1989; 111: 9134
  • 5 Jugé S, Gênet J.-P, Mallard S. EP 0489071A1, 1992 ; the original French patent application FP 19890011159 was filed in 1989.
  • 6 Schwink L, Ireland T, Püntener K, Knochel P. Tetrahedron: Asymmetry 1998; 9: 1143
  • 7 Murata K, Okano K, Miyagi M, Iwane H, Noyori R, Ikariya T. Org. Lett. 1999; 1: 1119
  • 8 Pu LY, Chen JQ, Li ML, Li Y, Xie JH, Zhou QL. Adv. Synth. Catal. 2016; 358: 1229
  • 9 Wu W, You C, Yin C, Liu Y, Dong X.-Q, Zhang X. Org. Lett. 2017; 19: 2548
  • 10 Yin C, Dong X.-Q, Zhang X. Adv. Synth. Catal. 2018; 360: 4319
  • 11 Zatolochnaya OV, Rodriguez S, Zhang Y, Lao KS, Tcyrulnikov S, Li G, Wang X.-J, Qu B, Biswas S, Mangunuru HP. R, Rivalti D, Sieber JD, Desrosiers J.-N, Leung JC, Grinberg N, Lee H, Haddad N, Yee NK, Song JJ, Kozlowski MC, Senanayake CH. Chem. Sci. 2018; 9: 4505
  • 12 Arai N, Okabe Y, Ohkuma T. Adv. Synth. Catal. 2019; 361: 5540
  • 13 Swamy PC, Varenikov A, de Ruiter G. Chem. Eur. J. 2020; 26: 2333
  • 14 Li X, Zhao Z.-B, Chen M.-W, Wu B, Wang H, Yu C.-B, Zhou Y.-G. Chem. Commun. 2020; 56: 5815
  • 15 Hou C.-J, Hu X.-P. Org. Lett. 2016; 18: 5592
  • 16 Lu B, Wu X, Li C, Ding G, Li W, Xie X, Zhang Z. J. Org. Chem. 2019; 84: 3201
  • 17 Liu Y.-T, Chen J.-Q, Li L.-P, Shao X.-Y, Xie J.-H, Zhou Q.-L. Org. Lett. 2017; 19: 3231
  • 18 Lynch D, Deasy RE, Clarke L.-A, Slattery CN, Khandavilli UB. R, Lawrence SE, Maguire AR, Magnus NA, Moynihan HA. Org. Lett. 2016; 18: 4978
  • 19 Bao D.-H, Gu X.-S, Xie J.-H, Zhou Q.-L. Org. Lett. 2017; 19: 118
    • 20a Phansavath P, Duprat de Paule S, Ratovelomanana-Vidal V, Genêt J.-P. Eur. J. Org. Chem. 2000; 3903
    • 20b Lavergne D, Mordant C, Ratovelomanana-Vidal V, Genêt J.-P. Org. Lett. 2001; 3: 1909
    • 20c Mordant C, Caño de Andrade MC, Touati R, Ben Hassine B, Ratovelomanana-Vidal V, Genêt J.-P. Synthesis 2003; 2405
    • 20d Mordant C, Dunkelmann P, Ratovelomanana-Vidal V, Genêt J.-P. Chem. Commun. 2004; 1296
    • 20e Mordant C, Dunkelmann P, Ratovelomanana-Vidal V, Genêt J.-P. Eur. J. Org. Chem. 2004; 3017
    • 20f Mordant C, Reymond S, Ratovelomanana-Vidal V, Genêt J.-P. Tetrahedron 2004; 60: 9715
    • 20g Labeeuw O, Phansavath P, Genêt J.-P. Tetrahedron: Asymmetry 2004; 15: 1899
    • 20h Mordant C, Reymond S, Tone H, Lavergne D, Touati R, Ben Hassine B, Ratovelomanana-Vidal V, Genêt J.-P. Tetrahedron 2007; 63: 6115
    • 20i Tone H, Buchotte M, Mordant C, Guittet E, Ayad T, Ratovelomanana-Vidal V. Org. Lett. 2009; 11: 1995
    • 20j Prevost S, Gauthier S, Caño de Andrade MC, Mordant C, Touati R, Lesot P, Savignac P, Ayad T, Phansavath P, Ratovelomanana-Vidal V, Genêt J.-P. Tetrahedron: Asymmetry 2010; 21: 1436
    • 20k Cartigny D, Püntener K, Ayad T, Scalone M, Ratovelomanana-Vidal V. Org. Lett. 2010; 12: 3788
    • 20l Prévost S, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Adv. Synth. Catal. 2011; 353: 3213
    • 20m Echeverria PG, Férard C, Cornil J, Guérinot A, Cossy J, Phansavath P, Ratovelomanana-Vidal V. Synlett 2014; 2761
    • 20n Echeverria P.-G, Prévost S, Cornil J, Férard C, Reymond S, Guérinot A, Cossy J, Ratovelomanana-Vidal V, Phansavath P. Org. Lett. 2014; 16: 2390
    • 20o Perez M, Echeverria PG, Martinez-Arripe E, Ez Zoubir M, Touati R, Zhang Z, Genêt JP, Phansavath P, Ayad T, Ratovelomanana-Vidal V. Eur. J. Org. Chem. 2015; 5949
    • 20p Echeverria PG, Cornil J, Férard C, Guérinot A, Cossy J, Phansavath P, Ratovelomanana-Vidal V. RSC Adv. 2015; 5: 56815
    • 21a Cornil J, Echeverria P.-G, Reymond S, Phansavath P, Ratovelomanana-Vidal V, Guérinot A, Cossy J. Org. Lett. 2016; 18: 4534
    • 21b Echeverria P.-G, Pons A, Prévost S, Férard C, Cornil J, Guérinot A, Cossy J, Phansavath P, Ratovelomanana-Vidal V. ARKIVOC 2019; (iv): 44
    • 22a Duprat de Paule S, Champion N, Ratovelomanana-Vidal V, Genêt J.-P, Dellis P. WO 03029259A1, 2003
    • 22b Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Eur. J. Org. Chem. 2003; 1931
    • 22c Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Deschaux G, Dellis P. Org. Process Res. Dev. 2003; 7: 399
    • 22d Jeulin S, Duprat de Paule S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5799
    • 22e Jeulin S, Champion N, Dellis P, Ratovelomanana-Vidal V, Genêt J.-P. Synthesis 2005; 3666
  • 23 Yamagata T, Tadaoka H, Nagata M, Hirao T, Kataoka Y, Ratovelomanana-Vidal V, Genêt J.-P, Mashima K. Organometallics 2006; 25: 2505
    • 24a Echeverria P, Férard C, Phansavath P, Ratovelomanana-Vidal V. Catal. Commun. 2015; 62: 95
    • 24b Zheng L.-S, Llopis Q, Echeverria P.-G, Férard C, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. J. Org. Chem. 2017; 82: 5607
  • 25 Fei Z, Wu Q, Li L, Jiang Q, Li B, Chen L, Wang H, Wu B, Wang X, Gao F, Qiu W, Guo J, Cheung CM. J. Org. Chem. 2020; 85: 6854
  • 26 Baumann T, Brückner R. Angew. Chem. Int. Ed. 2019; 58: 4714
  • 27 Zhang L, Wang Z, Han Z, Ding K. Angew. Chem. Int. Ed. 2020; 59: 15565
  • 28 Endean RT, Rasu L, Bergens SH. ACS Catal. 2019; 9: 6111
  • 29 Gu XS, Yu N, Yang XH, Zhu A.-T, Xie JH, Zhou QL. Org. Lett. 2019; 21: 4111
  • 30 Verzijl GK. M, Schuster C, Dax T, de Vries AH. M, Lefort L. Org. Process Res. Dev. 2018; 22: 1817
  • 31 Fan D, Lu J, Liu Y, Zhang Z, Liu Y, Zhang W. Tetrahedron 2016; 72: 5541
  • 32 Doering WE, Young RW. J. Am. Chem. Soc. 1950; 72: 631
  • 33 Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 7562
  • 34 González-Bobes F, Hanson R, Strotman N, Guo Z, Goswami A. Adv. Synth. Catal. 2016; 358: 2077
  • 35 Fang L, Lyu Q, Lu C, Li H, Liu S, Han L. Adv. Synth. Catal. 2016; 358: 3196
  • 36 Fang L, Liu S, Han L, Li H, Zhao F. Organometallics 2017; 36: 1217
  • 37 Alnafta N, Schmidt JP, Nesbitt CL, McErlean CS. P. Org. Lett. 2016; 18: 6520
  • 38 Fang L, Zhao F, Hu S, Han L, Hu X, Wang M, Sun Q. J. Org. Chem. 2018; 83: 12213
  • 39 Vyas VK, Bhanage BM. Org. Lett. 2016; 18: 6436
  • 40 Vyas VK, Bhanage BM. Asian J. Org. Chem. 2018; 7: 346
  • 41 Zhang Y.-M, Zhang Q.-Y, Wang D.-C, Xie M.-S, Qu G.-R, Guo H.-M. Org. Lett. 2019; 21: 2998
  • 42 Zhang Q, Zhang Y, Hao E, Bai J, Qu G, Guo H. Chin. J. Org. Chem. 2020; 40: 376
  • 43 Touge T, Sakaguchi K, Tamaki N, Nara H, Yokozawa T, Matsumura K, Kayaki Y. J. Am. Chem. Soc. 2019; 141: 16354
  • 44 Xiong Z, Tian J, Xue P, Zhang X, Lv H. Org. Chem. Front. 2020; 7: 104
  • 45 Cotman AE, Lozinšek M, Wang B, Stephan M, Mohar B. Org. Lett. 2019; 21: 3644
  • 46 Hu X, Zhang K, Chang F, Liu R, Liu G, Cheng T. Mol. Catal. 2018; 452: 271
  • 47 He B, Phansavath P, Ratovelomanana-Vidal V. Org. Lett. 2019; 21: 3276
  • 48 Qin T, Metz P. Org. Lett. 2017; 19: 2981
  • 49 Heo M, Lee B, Sishtla K, Fei X, Lee S, Park S, Yuan Y, Lee S, Kwon S, Lee J, Kim S, Corson TW, Seo S.-Y. J. Org. Chem. 2019; 84: 9995
  • 50 Luo Z, Wang Z, Sun G, Jian W, Jiang F, Luan B, Li R, Zhang L. Org. Lett. 2020; 22: 4322
  • 51 Cotman AE, Cahard D, Mohar B. Angew. Chem. Int. Ed. 2016; 55: 5294
  • 52 Zheng L.-S, Férard C, Phansavath P, Ratovelomanana-Vidal V. Chem. Commun. 2018; 54: 283
  • 53 Sun G, Zhou Z, Luo Z, Wang H, Chen L, Xu Y, Li S, Jian W, Zeng J, Hu B, Han X, Lin Y, Wang Z. Org. Lett. 2017; 19: 4339
  • 54 Sun G, Jian W, Luo Z, Sun T, Li C, Zhang J, Wang Z. Org. Process Res. Dev. 2019; 23: 1204
  • 55 Sarkale AM, Maurya V, Giri S, Appayee C. Org. Lett. 2019; 21: 4266
  • 56 Chen J, Park J, Kirk SM, Chen H.-C, Li X, Lippincott DJ, Melillo B, Smith AB. III. Org. Process Res. Dev. 2019; 23: 2464
  • 57 Wang X, Xu L, Yan L, Wang H, Han S, Wu Y, Chen F. Tetrahedron 2016; 72: 1787
  • 58 Touge T, Kuwana M, Komatsuki Y, Tanaka S, Nara H, Matsumura K, Sayo N, Kashibuchi Y, Saito T. Org. Process Res. Dev. 2019; 23: 452
  • 59 He B, Zheng L.-S, Phansavath P, Ratovelomanana-Vidal V. ChemSusChem 2019; 12: 3032
  • 60 Yu L, Somfai P. RSC Adv. 2019; 9: 2799
  • 61 Rolt A, O’Neill PM, Liang TJ, Stachulski AV. RSC Adv. 2019; 9: 40336
  • 62 Wang X, Xu L, Xiong F, Wu Y, Chen F. RSC Adv. 2016; 6: 37701
  • 63 Llopis Q, Férard C, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2016; 48: 3357
  • 64 Xiong Z, Pei C, Xue P, Lv H, Zhang X. Chem. Commun. 2018; 54: 3883
  • 65 Ashley ER, Sherer EC, Pio B, Orr RK, Ruck RT. ACS Catal. 2017; 7: 1446
  • 66 Cotman AE, Modec B, Mohar B. Org. Lett. 2018; 20: 2921
  • 67 Zheng L.-S, Phansavath P, Ratovelomanana-Vidal V. Org. Chem. Front. 2018; 5: 1366
  • 68 Zheng D, Zhao Q, Hu X, Cheng T, Liu G, Wang W. Chem. Commun. 2017; 53: 6113
  • 69 Strotman NA, Ramirez A, Simmons EM, Soltani O, Parsons AT, Fan Y, Sawyer JR, Rosner T, Janey JM, Tran K, Li J, La Cruz TE, Pathirana C, Ng AT, Deerberg J. J. Org. Chem. 2018; 83: 11133
  • 70 Jeran M, Cotman AE, Stephan M, Mohar B. Org. Lett. 2017; 19: 2042
  • 71 Kim HR, Achary R, Lee HK. J. Org. Chem. 2018; 83: 11987
  • 72 Zhang B, Liu L, Guo D, Wang J. ChemistrySelect 2019; 4: 1195
  • 73 Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA. J. Med. Chem. 2016; 59: 4385