Synthesis 2019; 51(24): 4507-4530
DOI: 10.1055/s-0039-1690987
review
© Georg Thieme Verlag Stuttgart · New York

Radical-Mediated Difunctionalization of Styrenes

Xiazhen Bao ‡
,
Jun Li ‡
,
Wei Jiang
,
Congde Huo
We thank the National Natural Science Foundation of China (21562037) for financially supporting this work.
Further Information

Publication History

Received: 14 July 2019

Accepted after revision: 26 August 2019

Publication Date:
10 October 2019 (online)

‡ These two authors contributed equally to this paper.

Abstract

Styrene, an extremely important compound in the chemical industry, is mainly produced by the dehydrogenation or oxidative dehydrogenation of ethylbenzene. Transformation of this raw organic material to more useful fine organic chemicals is a very significant topic. Recently, the radical difunctionalization of styrene has become a powerful and efficient tool for organic synthesis. This strategy can introduce two substituents into a styrene molecule in one step via addition to the C=C bond, enhancing the molecular complexity in a single operation with good selectivity and wide functional group compatibility.

1 Introduction

2 C-Centered Radicals

3 CF3 and Other Polyfluoroalkyl Radicals

4 N-Centered Radicals

5 P-Centered Radicals

6 O-Centered Radicals

7 S-Centered Radicals

8 Other-Atom-Centered Radicals

9 Conclusion and Perspective

 
  • References

  • 1 Bataille CJ. R, Donohoe TJ. Chem. Soc. Rev. 2011; 40: 114
  • 2 Wu S, Zhou Y, Li Z. Chem. Commun. 2019; 55: 883
  • 3 Gurram VR. B, Enumula SS, Koppadi KS, Chada RR, Burri DR, Kamaraju SR. R. Catal. Commun. 2019; 118: 1
  • 4 Cavani F, Trifiro F. Appl. Catal., A 1995; 133: 219
  • 5 Cheng K, Huang L, Zhang Y. Org. Lett. 2009; 11: 2908
  • 6 Kim JY, Park JC, Song H, Park KH. Bull. Korean Chem. Soc. 2010; 31: 3509
  • 7 Sun H, Zhang Y, Guo F, Zha Z, Wang Z. J. Org. Chem. 2012; 77: 3563
  • 8 Yan Z, Wang N.-X, Gao X.-W, Li J.-L, Wu Y.-H, Zhang T, Chen S.-L, Xing Y. Adv. Synth. Catal. 2019; 361: 1007
  • 9 Zhang W, Wang N.-X, Bai C.-B, Wang Y.-J, Lan X.-W, Xing Y, Li Y.-H, Wen J.-L. Sci. Rep. 2015; 5: 15250
  • 10 Su R, Li Y, Min M.-Y, Ouyang X.-H, Song R.-J, Li J.-H. Chem. Commun. 2018; 54: 13511
  • 11 Xie J, Huang Z.-Z. Chem. Commun. 2010; 46: 1947
  • 12 Lan X.-W, Wang N.-X, Zhang W, Wen J.-L, Bai C.-B, Xing Y, Li Y.-H. Org. Lett. 2015; 17: 4460
  • 13 Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737
  • 14 Lan X.-W, Wang N.-X, Bai C.-B, Lan C.-L, Zhang T, Chen S.-L, Xing Y. Org. Lett. 2016; 18: 5986
  • 15 Liu Y.-Y, Yang X.-H, Song R.-J, Luo S, Li J.-H. Nat. Commun. 2017; 8: 14720
  • 16 Chatalova-Sazepin C, Wang Q, Sammis GM, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 5443
  • 17 Bunescu A, Ha TM, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 10555
  • 18 Dong Y.-X, Li Y, Gu C.-C, Jiang S.-S, Song R.-J, Li J.-H. Org. Lett. 2018; 20: 7594
  • 19 Li W.-Y, Wu C.-S, Wang Z, Yang L. Chem. Commun. 2018; 54: 11013
  • 20 Liao Z, Yi H, Li Z, Fan C, Zhang X, Liu J, Deng Z, Lei A. Chem. Asian J. 2015; 10: 96
  • 21 Pan G.-H, Song R.-J, Xie Y.-X, Luo S, Li J.-H. Synthesis 2018; 50: 1651
  • 22 Yong X, Han Y.-F, Li Y, Song R.-J, Li J.-H. Chem. Commun. 2018; 54: 12816
  • 23 Zhang Y.-X, Jin R.-X, Yin H, Li Y, Wang X.-S. Org. Lett. 2018; 20: 7283
  • 24 Li W.-Y, Wang Q.-Q, Yang L. Org. Biomol. Chem. 2017; 15: 9987
  • 25 Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal. 2018; 8: 7489
  • 26 Speckmeier E, Fuchs PJ. W, Zeitler K. Chem. Sci. 2018; 9: 7096
  • 27 Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc. 2011; 133: 10756
  • 28 Yang W.-C, Weng S.-S, Ramasamy A, Rajeshwaren G, Liao Y.-Y, Chen C.-T. Org. Biomol. Chem. 2015; 13: 2385
  • 29 Ge L, Li Y, Bao H. Org. Lett. 2019; 21: 256
  • 30 Jiao Y, Chiou M.-F, Li Y, Bao H. ACS Catal. 2019; 9: 5191
  • 31 Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2014; 50: 7382
  • 32 Bu M, Niu TF, Cai C. Catal. Sci. Technol. 2015; 5: 830
  • 33 Hoque IU, Chowdhury SR, Maity S. J. Org. Chem. 2019; 84: 3025
  • 34 Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
  • 35 Yasu Y, Koike T, Akita M. Org. Lett. 2013; 15: 2136
  • 36 Dagousset G, Carboni A, Magnier E, Masson G. Org. Lett. 2014; 16: 4340
  • 37 Wang F, Wang D, Wan X, Wu L, Chen P, Liu G. J. Am. Chem. Soc. 2016; 138: 15547
  • 38 Li Y, Studer A. Angew. Chem. Int. Ed. 2012; 51: 8221
  • 39 Egami H, Shimizu R, Sodeoka M. Tetrahedron Lett. 2012; 53: 5503
  • 40 Ilchenko NO, Janson PG, Szabó KJ. J. Org. Chem. 2013; 78: 11087
  • 41 Liang Z, Wang F, Chen P, Liu G. Org. Lett. 2015; 17: 2438
  • 42 Wang F, Qi X, Liang Z, Chen P, Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881
  • 43 Yang M, Wang W, Liu Y, Feng L, Ju X. Chin. J. Chem. 2014; 32: 833
  • 44 Tomita R, Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
  • 45 Wu L, Wang F, Wan X, Wang D, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 2904
  • 46 Zhou S, Song T, Chen H, Liu Z, Shen H, Li C. Org. Lett. 2017; 19: 698
  • 47 Deb A, Manna S, Modak A, Patra T, Maity S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
  • 48 Jiang X.-Y, Qing F.-L. Angew. Chem. Int. Ed. 2013; 52: 14177
  • 49 Zhang H.-Y, Ge C, Zhao J, Zhang Y. Org. Lett. 2017; 19: 5260
  • 50 Zhang L, Zhang G, Wang P, Li Y, Lei A. Org. Lett. 2018; 20: 7396
  • 51 Wu Y.-B, Lu G.-P, Yuan T, Xu Z.-B, Wan L, Cai C. Chem. Commun. 2016; 52: 13668
  • 52 Guo J.-Y, Wu R.-X, Jin J.-K, Tian S.-K. Org. Lett. 2016; 18: 3850
  • 53 Valverde E, Kawamura S, Sekine D, Sodeoka M. Chem. Sci. 2018; 9: 7115
  • 54 Yu J, Wu Z, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 17156
  • 55 Shi E, Liu J, Liu C, Shao Y, Wang H, Lv Y, Ji M, Bao X, Wan X. J. Org. Chem. 2016; 81: 5878
  • 56 Li L, Huang M, Liu C, Xiao J.-C, Chen Q.-Y, Guo Y, Zhao Z.-G. Org. Lett. 2015; 17: 4714
  • 57 Yi N, Zhang H, Xu C, Deng W, Wang R, Peng D, Zeng Z, Xiang J. Org. Lett. 2016; 18: 1780
  • 58 Xu R, Cai C. Chem. Commun. 2019; 55: 4383
  • 59 Xu L, Mou X.-Q, Chen Z.-M, Wang S.-H. Chem. Commun. 2014; 50: 10676
  • 60 Sun X, Li X, Song S, Zhu Y, Liang Y.-F, Jiao N. J. Am. Chem. Soc. 2015; 137: 6059
  • 61 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
  • 62 Hussain MI, Feng Y, Hu L, Deng Q, Zhang X, Xiong Y. J. Org. Chem. 2018; 83: 7852
  • 63 Chen Y, Tian T, Li Z. Org. Chem. Front. 2019; 6: 632
  • 64 Zhang H, Pu W, Xiong T, Li Y, Zhou X, Sun K, Liu Q, Zhang Q. Angew. Chem. Int. Ed. 2013; 52: 2529
  • 65 Zhang H, Song Y, Zhao J, Zhang J, Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
  • 66 Zhang B, Studer A. Org. Lett. 2014; 16: 1790
  • 67 Li Y, Hartmann M, Daniliuc CG, Studer A. Chem. Commun. 2015; 51: 5706
  • 68 Wan D, Wang F, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2017; 56: 2054
  • 69 Wang D, Wu L, Wang F, Wan X, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2017; 139: 6811
  • 70 Zhang B, Studer A. Org. Lett. 2013; 15: 4548
  • 71 Fumagalli G, Rabet PT. G, Boyd S, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11481
  • 72 Lu M.-Z, Wang C.-Q, Loh T.-P. Org. Lett. 2015; 17: 6110
  • 73 Wang H, Zhang D, Bolm C. Chem. Eur. J. 2018; 24: 14942
  • 74 Monos TM, McAtee RC, Stephenson CR. J. Science 2018; 361: 1369
  • 75 Chumnanvej N, Samakkanad N, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. RSC Adv. 2014; 4: 59726
  • 76 Chen Y, Ma Y, Li L, Jiang H, Li Z. Org. Lett. 2019; 21: 1480
  • 77 Wei W, Ji J.-X. Angew. Chem. Int. Ed. 2011; 50: 9097
  • 78 Zhang G.-Y, Li C.-K, Li D.-P, Zeng R.-S, Shoberu A, Zou J.-P. Tetrahedron 2016; 72: 2972
  • 79 Taniguchi T, Idota A, Yokoyama S, Ishibashi H. Tetrahedron Lett. 2011; 52: 4768
  • 80 Gao Y, Wu J, Xu J, Zhang P, Tang G, Zhao Y. RSC Adv. 2014; 4: 51776
  • 81 Zhou S.-F, Li D.-P, Liu K, Zou J.-P, Asekun OT. J. Org. Chem. 2015; 80: 1214
  • 82 Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
  • 83 Xu J, Li X, Gao Y, Zhang L, Chen W, Fang H, Tang G, Zhao Y. Chem. Commun. 2015; 51: 11240
  • 84 Li J.-A, Zhang P.-Z, Liu K, Shoberu A, Zou J.-P, Zhang W. Org. Lett. 2017; 19: 4704
  • 85 Wang Y, Wang W, Tang R, Liu Z, Tao W, Fang Z. Org. Biomol. Chem. 2018; 16: 7782
  • 86 Zhang P.-Z, Zhang L, Li J.-A, Shoberu A, Zou J.-P, Zhang W. Org. Lett. 2017; 19: 5537
  • 87 Giglio BC, Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 13320
  • 88 Xia X.-F, Zhu S.-L, Gu Z, Wang H, Li W, Liu X, Liang Y.-M. J. Org. Chem. 2015; 80: 5572
  • 89 Bag R, Sar D, Punniyamurthy T. Org. Lett. 2015; 17: 2010
  • 90 Andia AA, Miner MR, Woerpel KA. Org. Lett. 2015; 17: 2704
  • 91 Lu Q, Liu Z, Luo Y, Zhang G, Huang Z, Wang H, Liu C, Miller JT, Lei A. Org. Lett. 2015; 17: 3402
  • 92 Xia X.-F, Gu Z, Liu W, Wang H, Xia Y, Gao H, Liu X, Liang Y.-M. J. Org. Chem. 2015; 80: 290
  • 93 Liu C, Zhu M, Wei W, Yang D, Cui H, Liu X, Wang H. Org. Chem. Front. 2015; 2: 1356
  • 94 Xue Q, Xie J, Xu P, Hu K, Cheng Y, Zhu C. ACS Catal. 2013; 3: 1365
  • 95 Zhou S.-F, Pan X, Zhou Z.-H, Shoberu A, Zou J.-P. J. Org. Chem. 2015; 80: 3682
  • 96 Huo C, Wang Y, Yuan Y, Chen F, Tang J. Chem. Commun. 2016; 52: 7233
  • 97 Tehri P, Aegurula B, Peddinti RK. Tetrahedron Lett. 2017; 58: 2062
  • 98 Wang Y, Deng L, Mei H, Du B, Han J, Pan Y. Green Chem. 2018; 20: 3444
  • 99 Yu J, Gao C, Song Z, Yang H, Fu H. Org. Biomol. Chem. 2015; 13: 4846
  • 100 Yuan Y, Chen Y, Tang S, Huang Z, Lei A. Sci. Adv. 2018; 4: eaat5312
  • 101 Zheng Y, He Y, Rong G, Zhang X, Weng Y, Dong K, Xu X, Mao J. Org. Lett. 2015; 17: 5444
  • 102 Cui H, Liu X, Wei W, Yang D, He C, Zhang T, Wang H. J. Org. Chem. 2016; 81: 2252
  • 103 Wang D, Yan Z, Xie Q, Zhang R, Lin S, Wang Y. Org. Biomol. Chem. 2017; 15: 1998
  • 104 Li X, Guo Y, Shen Z. J. Org. Chem. 2018; 83: 2818
  • 105 Lu Q, Zhang J, Wei F, Qi Y, Wang H, Liu Z, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7156
  • 106 Wei W, Wen J, Yang D, Wu M, You J, Wang H. Org. Biomol. Chem. 2014; 12: 7678
  • 107 Yang D, Huang B, Wei W, Li J, Lin G, Liu Y, Ding J, Sun P, Wang H. Green Chem. 2016; 18: 5630
  • 108 Yuan Z, Wang H.-Y, Mu X, Chen P, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2015; 137: 2468
  • 109 Wei W, Liu X, Yang D, Dong R, Cui Y, Yuan F, Wang H. Tetrahedron Lett. 2015; 56: 1808
  • 110 Kariya A, Yamaguchi T, Nobuta T, Tada N, Miura T, Itoh A. RSC Adv. 2014; 4: 13191
  • 111 Taniguchi N. J. Org. Chem. 2015; 80: 7797
  • 112 Chan C.-K, Lo N.-C, Chen P.-Y, Chang M.-Y. Synthesis 2017; 49: 4469
  • 113 Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2014; 55: 4742
  • 114 Chawla R, Singh AK, Yadav LD. S. Eur. J. Org. Chem. 2014; 2032
  • 115 Yang J, Liu Y.-Y, Song R.-J, Peng Z.-H, Li J.-H. Adv. Synth. Catal. 2016; 358: 2286
  • 116 Wei W, Liu C, Yang D, Wen J, You J, Suo Y, Wang H. Chem. Commun. 2013; 49: 10239
  • 117 Liu C, Ding L, Guo G, Liu W. Eur. J. Org. Chem. 2016; 910
  • 118 Wan X, Sun K, Zhang G. Sci. China Chem. 2017; 60: 353
  • 119 Yang F.-L, Wang F.-X, Wang T.-T, Wang Y.-J, Tian S.-K. Chem. Commun. 2014; 50: 2111
  • 120 Yuan Y, Cao Y, Lin Y, Li Y, Huang Z, Lei A. ACS Catal. 2018; 8: 10871
  • 121 Choudhuri K, Achar TK, Mal P. Adv. Synth. Catal. 2017; 359: 3566
  • 122 Xu R, Li Z. Tetrahedron Lett. 2018; 59: 3942
  • 123 Sun K, Lv Y, Zhu Z, Jiang Y, Qi J, Wu H, Zhang Z, Zhang G, Wang X. RSC Adv. 2015; 5: 50701
  • 124 Singh AK, Chawla R, Keshari T, Yadav VK, Yadav LD. S. Org. Biomol. Chem. 2014; 12: 8550
  • 125 Wang Y, Jiang W, Huo C. J. Org. Chem. 2017; 82: 10628
  • 126 Zhang J, An Y, Wu J. Chem. Eur. J. 2017; 23: 9477
  • 127 Shi X, Ren X, Ren Z, Li J, Wang Y, Yang S, Gu J, Gao Q, Huang G. Eur. J. Org. Chem. 2014; 5083
  • 128 Gao X, Pan X, Gao J, Jiang H, Yuan G, Li Y. Org. Lett. 2015; 17: 1038
  • 129 Wang H, Lu Q, Qian C, Liu C, Liu W, Chen K, Lei A. Angew. Chem. Int. Ed. 2016; 55: 1094
  • 130 Yadav AK, Yadav LD. S. Green Chem. 2015; 17: 3515
  • 131 Yadav AK, Yadav LD. S. Green Chem. 2016; 18: 4240
  • 132 Yadav AK, Singh KN. Chem. Commun. 2018; 54: 1976
  • 133 Fu N, Sauer GS, Lin S. J. Am. Chem. Soc. 2017; 139: 15548
  • 134 Wang H, Chen C, Liu W, Zhu Z. Beilstein J. Org. Chem. 2017; 13: 2023
  • 135 Sun L, Yuan Y, Yao M, Wang H, Wang D, Gao M, Chen Y.-H, Lei A. Org. Lett. 2019; 21: 1297
  • 136 Dong H, Zhang L, Fang Z, Fu W, Tang T, Feng Y, Tang T. RSC Adv. 2017; 7: 22008
  • 137 Yang Y, Song R.-J, Ouyang X.-H, Wang C.-Y, Li J.-H, Luo S. Angew. Chem. Int. Ed. 2017; 56: 7916
  • 138 Saravanan P, Anbarasan P. Chem. Commun. 2019; 55: 4639