Synthesis 2020; 52(14): 2031-2037
DOI: 10.1055/s-0039-1690896
feature
© Georg Thieme Verlag Stuttgart · New York

Zeolites Catalyze the Nazarov Reaction and the tert-Butylation of Alcohols by Stabilization of Carboxonium Intermediates

María Tejeda-Serrano
,
Sergio Sanz-Navarro
,
Finn Blake
,
Instituto de Tecnología Química, Universidad Politècnica de València, Consejo Superior de Investigaciones Científicas (ITQ, UPV-CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain   Email: anleyva@itq.upv.es
› Author Affiliations
This work was supported by the MINECO (Spain) (Projects CTQ 2017-86735-P, RTC-2017-6331-5, and Severo Ochoa program SEV-2016-0683)
Further Information

Publication History

Received: 31 January 2020

Accepted after revision: 26 March 2020

Publication Date:
20 April 2020 (online)


Abstract

Zeolites are the most used catalysts worldwide in petrochemistry processes, with particular ability to stabilize carbocations. However, the use of zeolites in organic synthesis is still scarce. We show here that representative carboxonium-mediated organic reactions, such as the Nazarov cyclization and the tert-butylation of alcohols with tert-butyl acetate, typically performed with very strong acid catalysts in solution such as triflic acid, can be catalyzed by simple zeolites with high yield and selectivity. The aluminosilicate framework stabilizes the intermediate carboxonium species and overrides the need for superacid protons in solution.

Supporting Information

 
  • References

    • 1a Antoniotti S, Dalla V, Duñach E. Angew. Chem. Int. Ed. 2010; 49: 7860
    • 1b Cabrero-Antonino JR, Tejeda-Serrano M, Quesada M, Vidal-Moya JA, Leyva-Perez A, Corma A. Chem. Sci. 2017; 8: 689
  • 2 Naredla RR, Klumpp DA. Chem. Rev. 2013; 113: 6905
  • 3 Losch P, Joshi HR, Vozniuk O, Grünert A, Ochoa-Hernández C, Jabraoui H, Badawi M, Schmidt W. J. Am. Chem. Soc. 2018; 140: 17790
  • 4 Cabrero-Antonino J, Leyva-Pérez A, Corma A. Angew. Chem. Int. Ed. 2015; 54: 5658
    • 5a Corma A, Garcia H. Chem. Rev. 2003; 103: 4307
    • 5b Corma A. J. Catal. 2003; 216: 298
    • 6a Nursahedova SK, Zerov AV, Boyarskaya IA, Grinenko EV, Nenajdenko VG, Vasilyev AV. Org. Biomol. Chem. 2019; 17: 1215
    • 6b Nursahedova SK, Ryabukhin DS, Muzalevskiy VM, Iakovenko RO, Boyarskaya IA, Starova GL, Nenajdenko VG, Vasilyev AV. Eur. J. Org. Chem. 2019; 1293
    • 6c Rivero-Crespo MA, Tejeda-Serrano M, Perez-Sanchez H, Ceron-Carrasco JP, Leyva-Perez A. Angew. Chem. Int. Ed. 2020; 59: 3846
    • 7a Luzgin MV, Romannikov VN, Stepanov AG, Zamaraev KI. J. Am. Chem. Soc. 1996; 118: 10890
    • 7b Ha K.-S, Lee Y.-J, Bae JW, Kim YW, Woo MH, Kim H.-S, Park M.-J, Jun K.-W. Appl. Catal. A 2011; 395: 95
    • 8a He W, Sun X, Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278
    • 8b Alachouzos G, Frontier AJ. Angew. Chem. Int. Ed. 2017; 56: 15030
  • 9 Lloret V, Rivero-Crespo MA, Vidal-Moya JA, Wild S, Domenech-Carbo A, Heller BS. J, Shin S, Steinrueck H.-P, Maier F, Hauke F, Varela M, Hirsch A, Leyva-Perez A, Abellan G. Nat. Commun. 2019; 10: 1
  • 10 Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531
  • 11 He W, Herrick IR, Atesin TA, Caruana PA, Kellenberger CA, Frontier AJ. J. Am. Chem. Soc. 2008; 130: 1003
  • 12 Lewis JD, Van de Vyver S, Román-Leshkov Y. Angew. Chem. Int. Ed. 2015; 54: 9835
    • 13a Derouane E, Védrine J, Pinto R, Borges P, Costa L, Lemos M, Lemos F, Ribeiro F. Catal. Rev. 2013; 55: 454
    • 13b Daneshfar Z, Rostami A. RSC Adv. 2015; 5: 104695
  • 14 Kadam SA, Li H, Wormsbecher RF, Travert A. Chem. Eur. J. 2018; 24: 5489
    • 15a Huang C, Zhang Y, Yang H, Wang D, Mi L, Shao Z, Liu M, Hou H. Crystal Growth Design 2018; 18: 5674
    • 15b Shao Z, Liu M, Dang J, Huang C, Xu W, Wu J, Hou H. Inorg. Chem. 2018; 57: 10224
  • 16 Reale E, Leyva A, Corma A, Martinez C, Garcia H, Rey F. J. Mater. Chem. 2005; 15: 1742
    • 17a Liu R, Abu Sohel S, Lin S. Synlett 2008; 745
    • 17b Somai Magar K, Lee Y. Org. Lett. 2013; 15: 4288
    • 17c Morita N, Miyamoto M, Yoda A, Yamamoto M, Ban S, Hashimoto Y, Tamura O. Tetrahedron Lett. 2016; 57: 4460
  • 18 Clegg N, Paruthiyil S, Leitman D, Scanlan T. J. Med. Chem. 2005; 48: 5989
    • 19a Armengol E, Corma A, Garcia H, Jaime P. Appl. Catal. A 1995; 126: 391
    • 19b Cantín Á, Gomez MV, de la Hoz A. Beilstein J. Org. Chem. 2016; 12: 2181
    • 19c Martínez-Gualda AM, Cano R, Marzo L, Pérez-Ruiz R, Luis-Barrera J, Mas-Ballesté R, Fraile A, de la Peña O’Shea VA, Alemán J. Nat. Commun. 2019; 10: 2634
    • 20a Cabrero-Antonino JR, Leyva-Perez A, Corma A. Chem. Eur. J. 2012; 18: 11107
    • 20b Cabrero-Antonino JR, Leyva-Perez A, Corma A. Chem. Eur. J. 2013; 19: 8627
    • 21a Paul N, Kaladevi S, Beneto AJ, Muthusubramanian S, Bhuvanesh N. Tetrahedron 2012; 68: 6892
    • 21b Rai NP, Arunachalam PN. Synth. Commun. 2007; 37: 2891
    • 21c Zhao L, Liu B, Tan Q, Ding C.-H, Xu B. Org. Lett. 2019; 21: 9223
    • 21d Guiard J, Rahali Y, Praly J.-P. Eur. J. Org. Chem. 2014; 4461
    • 21e Chandrasekhar S, Rajaiah G, Chandraiah L, Narsimha DS. Synlett 2001; 1779
    • 21f Mallesha N, Prahlada Rao S, Suhas R, Channe Gowda D. Tetrahedron Lett. 2012; 53: 641
    • 21g Wright S, Hageman D, Wright A, McClure L. Tetrahedron Lett. 1997; 38: 7345
    • 21h Liu Y, Wang X, Wang Y, Du C, Shi H, Jin S, Jiang C, Xiao J, Cheng M. Adv. Synth. Catal. 2015; 357: 1029
    • 21i Salvati AE, Hubley CT, Albiniak PA. Tetrahedron Lett. 2014; 55: 7133
    • 21j Suzuki H, Takeuchi T, Mori T. J. Org. Chem. 1996; 61: 5944
    • 21k Li Q, Liskey CW, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 8755