Synthesis 2020; 52(14): 2017-2030
DOI: 10.1055/s-0039-1690882
short review
© Georg Thieme Verlag Stuttgart · New York

Homogeneous Gold-Catalyzed Aryl–Aryl Coupling Reactions

Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark   Email: sokr@kemi.dtu.dk
› Author Affiliations
The author is deeply appreciative of generous financial support from the Lundbeck Foundation (Grant No. R250-2017-1292) and the Technical University of Denmark.
Further Information

Publication History

Received: 10 February 2020

Accepted after revision: 10 March 2020

Publication Date:
02 April 2020 (online)


Abstract

Synthesis of biaryl motifs are crucial for the development and synthesis of pharmaceuticals, natural products, and functional materials. During the last decade, gold-catalyzed aryl–aryl coupling reactions have evolved from a curiosity to a well-established research field. This review summarizes the field from early examples up to the latest developments. Facile C–H functionalization and orthogonal reactivity compared to many other types of transition metal catalysis, for example, palladium catalysis, makes gold-catalyzed aryl–aryl coupling reactions highly appealing and valuable.

1 Introduction

2 Early Examples

3 Cross-Coupling with External Oxidants

4 Cross-Coupling without External Oxidants

5 Conclusions

 
  • References

  • 2 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
  • 3 Kharasch MS, Isbell HS. J. Am. Chem. Soc. 1931; 53: 3053

    • For reviews on gold-catalyzed C–H functionalization, see:
    • 4a Skouta R, Li C.-J. Tetrahedron 2008; 64: 4917
    • 4b Boorman TC, Larrosa I. Chem. Soc. Rev. 2011; 40: 1910
    • 4c de Haro T, Nevado C. Synthesis 2011; 2530
    • 4d Kramer S. Chem. Eur. J. 2016; 22: 15584

      For reviews on oxidative coupling reactions with gold catalysis, see:
    • 5a Wegner HA, Auzias M. Angew. Chem. Int. Ed. 2011; 50: 8236
    • 5b Hopkinson MN, Gee AD, Gouverneur V. Chem. Eur. J. 2011; 17: 8248
    • 6a Vicente J, Bermudez MD, Escribano J, Carrillo MP, Jones PG. J. Chem. Soc., Dalton Trans. 1990; 3083
    • 6b Vicente J, Bermudez MD, Escribano J. Organometallics 1991; 10: 3380
    • 6c Constable EC, Sousa LR. J. Organomet. Chem. 1992; 427: 125
    • 6d Vicente J, Bermudez M.-D, Carrion F.-J, Jones PG. Chem. Ber. 1996; 129: 1395
  • 7 Gonzalez-Arellano C, Corma A, Iglesias M, Sanchez F. Chem. Commun. 2005; 1990
    • 8a Gonzalez-Arellano C, Corma A, Iglesias M, Sanchez F. J. Catal. 2006; 238: 497
    • 8b Corma A, Gutierrez-Puebla E, Iglesias M, Monge A, Perez-Ferreras S, Sanchez F. Adv. Synth. Catal. 2006; 348: 1899
  • 9 Lauterbach T, Livendahl M, Rosellon A, Espinet P, Echavarren AM. Org. Lett. 2010; 12: 3006
    • 10a Kyriakou G, Beaumont SK, Humphrey SM, Antonetti C, Lambert RM. ChemCatChem 2010; 2: 1444
    • 10b Corma A, Juarez R, Boronat M, Sanchez F, Iglesias M, Garcia H. Chem. Commun. 2011; 47: 1446
    • 11a Kar A, Mangu N, Kaiser HM, Beller M, Tse MK. Chem. Commun. 2008; 386
    • 11b Kar A, Mangu N, Kaiser HM, Tse MK. J. Organomet. Chem. 2009; 694: 524
  • 12 Ball LT, Lloyd-Jones GC, Russell CA. Science 2012; 337: 1644
  • 13 Ball LT, Lloyd-Jones GC, Russell CA. J. Am. Chem. Soc. 2014; 136: 254

    • Phosphine oxidation was also observed in later reports on alkyne–alkyne cross-coupling reactions:
    • 14a Peng H, Xi Y, Ronaghi N, Dong B, Akhmedov NG, Shi X. J. Am. Chem. Soc. 2014; 136: 13174
    • 14b Leyva-Perez A, Domenech-Carbo A, Corma A. Nat. Commun. 2015; 6, 6703
  • 15 Wolf WJ, Winston MS, Toste FD. Nat. Chem. 2014; 6: 159
  • 16 Levin MD, Toste FD. Angew. Chem. Int. Ed. 2014; 53: 6211
  • 17 Hata K, Ito H, Segawa Y, Itami K. Beilstein J. Org. Chem. 2015; 11: 2737
  • 18 Cresswell AJ, Lloyd-Jones GC. Chem. Eur. J. 2016; 22: 12641
  • 19 Corrie TJ. A, Ball LT, Russell CA, Lloyd-Jones GC. J. Am. Chem. Soc. 2017; 139: 245
  • 20 Corrie TJ. A, Lloyd-Jones GC. Top. Catal. 2017; 60: 570
  • 21 Robinson MP, Lloyd-Jones GC. ACS Catal. 2018; 8: 7484
  • 22 Wu Q, Du C, Huang Y, Liu X, Long Z, Song F, You J. Chem. Sci. 2015; 6: 288

    • For seminal studies on reactions with NFSI and organogold complexes, see:
    • 23a Hashmi AS. K, Ramamurthi TD, Rominger F. J. Organomet. Chem. 2009; 694: 592
    • 23b Hashmi AS. K, Ramamurthi TD, Todd MH, Tsang AS.-K, Graf K. Aust. J. Chem. 2010; 63: 1619
  • 24 Hofer M, Genoux A, Kumar R, Nevado C. Angew. Chem. Int. Ed. 2017; 56: 1021
  • 25 Fricke C, Dahiya A, Reid WB, Schoenebeck F. ACS Catal. 2019; 9: 9231
  • 26 Cambeiro XC, Ahlsten N, Larrosa I. J. Am. Chem. Soc. 2015; 137: 15636

    • For cross-coupling using stoichiometric perfluoroaryl gold complexes, see:
    • 27a Cambeiro XC, Boorman TC, Lu P, Larrosa I. Angew. Chem. Int. Ed. 2013; 52: 1781
    • 27b Hofer M, Nevado C. Tetrahedron 2013; 69: 5751
    • 28a Lu P, Boorman TC, Slawin AM. Z, Larrosa I. J. Am. Chem. Soc. 2010; 132: 5580
    • 28b Ahlsten N, Perry GJ. P, Cambeiro XC, Boorman TC, Larrosa I. Catal. Sci. Technol. 2013; 3: 2892
  • 29 Li W, Yuan D, Wang G, Zhao Y, Xie J, Li S, Zhu C. J. Am. Chem. Soc. 2019; 141: 3187

    • For examples of silver-catalyzed C–H functionalization in palladium catalysis, see:
    • 30a Lee SY, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 15278
    • 30b Whitaker D, Bures J, Larrosa I. J. Am. Chem. Soc. 2016; 138: 8384
  • 31 Liu K, Li N, Ning Y, Zhu C, Xie J. Chem 2019; 5: 2718
  • 32 For an earlier review on ‘oxidant-free’ coupling reactions in gold catalysis, see: Akram MO, Banerjee S, Saswade SS, Bedi V, Patil NT. Chem. Commun. 2018; 54: 11069
  • 33 Cai R, Aguilera EY, Xi Y, Akhmedov NG, Petersen JL, Chen H, Shi X. Angew. Chem. Int. Ed. 2015; 54: 8772

    • For pioneering examples combining aryldiazonium salts with gold and photocatalysis, but not for aryl–aryl coupling, see:
    • 34a Sahoo B, Hopkinson MN, Glorius F. J. Am. Chem. Soc. 2013; 135: 5505
    • 34b Hopkinson MN, Sahoo B, Glorius F. Adv. Synth. Catal. 2014; 356: 2794
    • 34c Shu X.-z, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
    • 34d He Y, Wu H, Toste FD. Chem. Sci. 2015; 6: 1194
  • 35 Gauchot V, Lee A.-L. Chem. Commun. 2016; 52: 10163
  • 36 Cornilleau T, Hermange P, Fouquet E. Chem. Commun. 2016; 52: 10040
  • 37 Witzel S, Xie J, Rudolph M, Hashmi AS. K. Adv. Synth. Catal. 2017; 359: 1522
  • 38 Sauer C, Liu Y, De Nisi A, Protti S, Fagnoni M, Bandini M. ChemCatChem 2017; 9: 4456
  • 39 Gauchot V, Sutherland DR, Lee A.-L. Chem. Sci. 2017; 8: 2885
  • 40 Chakrabarty I, Akram MO, Biswas S, Patil NT. Chem. Commun. 2018; 54: 7223
  • 41 Xie J, Sekine K, Witzel S, Krämer P, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2018; 57: 16648
  • 42 Witzel S, Sekine K, Rudolph M, Hashmi AS. K. Chem. Commun. 2018; 54: 13802
  • 43 Joost M, Zeineddine A, Estevez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. J. Am. Chem. Soc. 2014; 136: 14654
    • 44a Zeineddine A, Estevez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Nat. Commun. 2017; 8: 565
    • 44b Rodriguez J, Zeineddine A, Carrizo ED. S, Miqueu K, Saffon-Merceron N, Amgoune A, Bourissou D. Chem. Sci. 2019; 10: 7183
  • 45 Ye X, Zhao P, Zhang S, Zhang Y, Wang Q, Shan C, Wojtas L, Guo H, Chen H, Shi X. Angew. Chem. Int. Ed. 2019; 58: 17226
  • 46 For a recent review, see: Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
    • 47a Bringmann G, Mortimer AJ. P, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 47b Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
  • 48 Tabey A, Berlande M, Hermange P, Fouquet E. Chem. Commun. 2018; 54: 12867
  • 49 Himmelstrup J, Buendia MB, Sun X.-W, Kramer S. Chem. Commun. 2019; 55: 12988