Synlett 2020; 31(11): 1050-1063
DOI: 10.1055/s-0039-1690867
account
© Georg Thieme Verlag Stuttgart · New York

Chemistry of Hetera-buckybowl Trichalcogenasumanenes

Dongxu Li
,
Xiangfeng Shao
This work was supported by the National Natural Science Foundation of China (Grant Nos. 21871119 and 21522203) and the National Key R&D Program of China (Grant No. 2017YFA0204903).
Further Information

Publication History

Received: 23 December 2019

Accepted after revision: 02 March 2020

Publication Date:
02 April 2020 (online)


Dedicated to Prof. Zhongli Liu on the occasion of his 80th birthday

Abstract

Buckybowls attract significant attention in chemistry and materials science owing to their unique features related to both geometric and electronic aspects. Doping the π-skeleton of buckybowls with the main group elements results in hetera-buckybowls, and accordingly has a large influence on the chemical and physical properties. This account summarizes our research progress on hetera-buckybowl trichalcogenasumanenes (TCSs), including their synthesis, regioselective oxidations, transformation into various hetero polycycles (chiral π-systems, molecular spoons, etc.), and their application as optoelectronic materials.

1 Introduction

2 Synthesis of TCSs

3 Structural and Electronic Features of TCSs

4 Regioselective Oxidation of TCSs

4.1 Cleavage of the Edged Benzene Rings

4.2 Oxidation of the Thiophene Rings

4.3 Transformation of Butoxy Groups into an ortho-Quinone

4.4 Intermolecular Charge Transfer

4.5 Influence of Chalcogen Atoms on Oxidation Reactions

5 Synthesis of Hetero Polycycles from TCSs

6 Optoelectronic Properties of TCSs and Their Derivatives

7 Conclusion

 
  • References

    • 1a Jiang W, Li Y, Wang Z. Acc. Chem. Res. 2014; 47: 3135
    • 1b Narita A, Wang X, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
    • 1c Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications. Miao Q. Wiley-VCH; Weinheim: 2015
  • 2 Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. Nature 1985; 318: 162
    • 3a Tanigaki K, Ebbesen TW, Saito S, Mizuki J, Tsai JS, Kubo Y, Kuroshima S. Nature 1991; 352: 222
    • 3b Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TT. M, Ramirez AP, Kortan AR. Nature 1991; 350: 600
    • 4a Guldi DM, Illescas BM, Atienza CM, Wielopolski M, Martín N. Chem. Soc. Rev. 2009; 38: 1587
    • 4b Dennler G, Scharber MC, Brabec CJ. Adv. Mater. 2009; 21: 1323
    • 4c Li G, Zhu R, Yang Y. Nat. Photonics 2012; 6: 153
  • 6 Barth WE, Lawton RG. J. Am. Chem. Soc. 1966; 88: 380
  • 7 Scott LT, Hashemi MM, Meyer DT, Warren HB. J. Am. Chem. Soc. 1991; 113: 7082
    • 8a Borchardt A, Fuchicello A, Kilway KV, Baldridge KK, Siegel JS. J. Am. Chem. Soc. 1992; 114: 1921
    • 8b Seiders TJ, Elliott EL, Grube GH, Siegel JS. J. Am. Chem. Soc. 1999; 121: 7804
  • 9 Sygula A, Rabideau PW. J. Am. Chem. Soc. 1999; 121: 7800
    • 10a Mehta G, Shahk SR, Ravikumarc K. J. Chem. Soc., Chem. Commun. 1993; 12: 1006
    • 10b Gupta HK, Lock PE, McGlinchey MJ. Organometallics 1997; 16: 3628
    • 11a Sakurai H, Daiko T, Hirao T. Science 2003; 301: 1878
    • 11b Sakurai H, Daiko T, Sakane H, Amaya T, Hirao T. J. Am. Chem. Soc. 2005; 127: 11580
    • 11c Amaya T, Mori K, Wu H.-L, Ishida S, Nakamura J.-i, Murata K, Hirao T. Chem. Commun. 2007; 1902
    • 12a Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, de Meijere A. Science 2002; 295: 1500
    • 12b Amaya T, Seki S, Moriuchi T, Nakamoto K, Nakata T, Sakane H, Saeki A, Tagawa S, Hirao T. J. Am. Chem. Soc. 2009; 131: 408
    • 12c Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li B. J. Am. Chem. Soc. 2012; 134: 107
    • 12d Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
    • 12e Dutta AK, Linden A, Zoppi L, Baldridge KK, Siegel JS. Angew. Chem. Int. Ed. 2015; 54: 10792
    • 12f Fernández-García JM, Evans PJ, Medina Rivero S, Fernández I, García-Fresnadillo D, Perles J, Casado J, Martín N. J. Am. Chem. Soc. 2018; 140: 17188
    • 12g Meng D, Liu GG, Xiao CY, Shi YJ, Zhang L, Jiang L, Baldridge KK, Li Y, Siegel JS, Wang Z. J. Am. Chem. Soc. 2019; 141: 5402
    • 12h Zhu ZZ, Chen ZC, Yao YR, Cui CH, Li SH, Zhao XJ, Zhang Q, Tian HR, Xu PY, Xie FF, Xie XM, Tan YZ, Deng SL, Quimby JM, Scott LT, Xie SY, Huang RB, Zheng LS. Sci. Adv. 2019; 5: eaaw0982
    • 12i Shoyama K, Würthner F. J. Am. Chem. Soc. 2019; 141: 13008
    • 13a Petrukhina MA. Coord. Chem. Rev. 2007; 251: 1690
    • 13b Filatov AS, Petrukhina MA. Coord. Chem. Rev. 2010; 254: 2234
    • 13c Seiders TJ, Baldridge KK, O’Connor JM, Siegel JS. J. Am. Chem. Soc. 1997; 119: 4781
    • 13d Petrukhina MA, Andreini KW, Mack J, Scott LT. Angew. Chem. Int. Ed. 2003; 42: 3375
    • 13e Amaya T, Sakane H, Hirao T. Angew. Chem. Int. Ed. 2007; 46: 8376
    • 13f Petrukhina MA. Angew. Chem. Int. Ed. 2008; 47: 1150
    • 13g Zabula AV, Filatov AS, Spisak SN, Rogachev AY, Petrukhina MA. Science 2011; 333: 1008
    • 13h Amaya T, Takahashi Y, Moriuchi T, Hirao T. J. Am. Chem. Soc. 2014; 136: 12794
    • 14a Mizyed S, Georghiou PE, Bancu M, Cuadra B, Rai AK, Cheng P, Scott LT. J. Am. Chem. Soc. 2001; 123: 12770
    • 14b Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM. J. Am. Chem. Soc. 2007; 129: 3842
    • 14c Gallego M, Calbo J, Aragó J, Krick Calderon RM, Liquido FH, Iwamoto T, Greene AK, Jackson EA, Pérez EM, Ortí E, Guldi DM, Scott LT, Martín N. Angew. Chem. Int. Ed. 2014; 53: 2170
    • 14d Liu YM, Xia D, Li BW, Zhang QY, Sakurai T, Tan YZ, Seki S, Xie SY, Zheng LS. Angew. Chem. Int. Ed. 2016; 55: 13047
    • 14e Shoji Y, Kajitani T, Ishiwari F, Ding Q, Sato H, Anetai H, Akutagawa T, Sakurai H, Fukushima T. Chem. Sci. 2017; 8: 8405
    • 14f Liu YM, Huang YQ, Liu SH, Chen DD, Tang C, Qiu ZL, Zhu J, Tan YZ. Angew. Chem. Int. Ed. 2019; 58: 13276
    • 15a Shi K, Lei T, Wang X, Wang J, Pei J. Chem. Sci. 2014; 5: 1041
    • 15b Saito M, Shinokubo H, Sakurai H. Mater. Chem. Front. 2018; 2: 635
    • 16a Dong H, Zhu H, Meng Q, Gong X, Hu W. Chem. Soc. Rev. 2012; 41: 1754
    • 16b Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
    • 16c Mei J, Diao Y, Appleton AL, Fang L, Bao Z. J. Am. Chem. Soc. 2013; 135: 6724
    • 16d Jiang W, Li Y, Wang Z. Chem. Soc. Rev. 2013; 42: 6113
    • 17a Tan Q, Higashibayashi S, Karanjit S, Sakurai H. Nat. Commun. 2012; 3: 891
    • 17b Kaewmati P, Tan Q, Higashibayashi S, Yakiyama Y, Sakurai H. Chem. Lett. 2016; 46: 146
    • 17c Kaewmati P, Yakiyama Y, Ohtsu H, Kawano M, Haesuwannakij S, Higashibayashi S, Sakurai H. Mater. Chem. Front. 2018; 2: 514
    • 18a Li X, Shao X. Synlett 2014; 25: 1795
    • 18b Saito M, Furukawa S, Kobayashi J, Kawashima T. Chem. Rec. 2016; 16: 64
    • 18c Hou X, Sun Y, Liu L, Wang S, Geng R, Shao X. Chin. Chem. Lett. 2016; 27: 1166
    • 18d Furukawa S, Kobayashi J, Kawashima T. J. Am. Chem. Soc. 2009; 131: 14192
    • 18e Saito M, Tanikawa T, Tajima T, Guo JD, Nagase S. Tetrahedron Lett. 2010; 51: 672
    • 18f Tanikawa T, Saito M, Guo JD, Nagase S. Org. Biomol. Chem. 2011; 9: 1731
    • 18g Tanikawa T, Saito M, Guo JD, Nagase S, Minoura M. Eur. J. Org. Chem. 2012; 36: 7135
    • 18h Furukawa S, Hayashi K, Yamagishi K, Saito M. Mater. Chem. Front. 2018; 2: 929
    • 18i Tsefrikas VM, Greene AK, Scott LT. Org. Chem. Front. 2017; 4: 688
    • 18j Furukawa S, Suda Y, Kobayashi J, Kawashima T, Tada T, Fujii S, Kiguchi M, Saito M. J. Am Chem. Soc. 2017; 139: 5787
  • 19 Imamura K, Takimiya K, Otsubo T, Aso Y. Chem. Commun. 1999; 1859
    • 20a Tan Q, Zhou D, Zhang T, Liu B, Xu B. Chem. Commun. 2017; 53: 10279
    • 20b Jiang M, Guo J, Liu B, Tan Q, Xu B. Org. Lett. 2019; 21: 8328
    • 21a Priyakumar UD, Sastry GN. Tetrahedron Lett. 2001; 42: 1379
    • 21b Priyakumar UD, Sastry GN. J. Org. Chem. 2001; 66: 6523
    • 21c Sastry GN, Priyakumar UD. J. Chem. Soc., Perkin Trans. 2 2001; 30
  • 22 Li X, Zhu Y, Shao J, Wang B, Zhang S, Shao Y, Jin X, Yao X, Fang R, Shao X. Angew. Chem. Int. Ed. 2014; 53: 535
  • 23 Wang S, Li X, Hou X, Sun Y, Shao X. Chem. Commun. 2016; 52: 14486
  • 24 Wang S, Shang J, Yan C, Wang W, Yuan C, Zhang H.-L, Shao X. Org. Chem. Front. 2019; 6: 263
  • 25 Wang S, Yan C, Shang J, Wang W, Yuan C, Zhang H.-L, Shao X. Angew. Chem. Int. Ed. 2019; 58: 3819
  • 26 Kropp PJ, Breton GW, Fields JD, Tung JC, Loomis BR. J. Am. Chem. Soc. 2000; 122: 4280
  • 27 Li X, Zhu Y, Shao J, Chen L, Zhao S, Wang B, Zhang S, Shao Y, Zhang H.-L, Shao X. Angew. Chem. Int. Ed. 2015; 54: 267
  • 28 Hou X, Sun J, Liu Z, Yan C, Song W, Zhang H.-L, Zhou S, Shao X. Chem. Commun. 2018; 54: 10981
  • 29 Mander LN, Williams CM. Tetrahedron 2003; 59: 1105
    • 30a Barbarella G, Pudova O, Arbizzani C, Mastragostino M, Bongini A. J. Org. Chem. 1998; 63: 1742
    • 30b Fukazawa A, Oshima H, Shimizu S, Kobayashi N, Yamaguchi S. J. Am. Chem. Soc. 2014; 136: 8738
    • 31a Rozen S, Kol M. J. Org. Chem. 1990; 55: 5155
    • 31b Rozen S, Bareket Y. J. Org. Chem. 1997; 62: 1457
    • 31c Amir E, Rozen S. Angew. Chem. Int. Ed. 2005; 44: 7374
  • 32 Hou X, Zhu Y, Qin Y, Chen L, Li X, Zhang H.-L, Xu W, Zhu D, Shao X. Chem. Commun. 2017; 53: 1546
  • 33 Kong X, He Z, Gopee H, Jing X, Cammidge AN. Tetrahedron Lett. 2011; 52: 77
  • 34 Sun Y, Li X, Sun C, Shen H, Hou X, Lin D, Zhang H.-L, Di C.-a, Zhu D, Shao X. Angew. Chem. Int. Ed. 2017; 56: 13470
    • 35a Otsubo T, Takimiya K. Selenophenes as Hetero-Analogues of Thiophene-Based Materials. In Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics. Perepichka IF, Perepichka DF. John Wiley & Sons; New York: 2009. Chap. 6, 321
    • 35b Carrera EI, Seferos DS. Macromolecules 2015; 48: 297
    • 36a Rivière P, Rivière-Baudet M, Satgè J. In Comprehensive Organometallic Chemistry II, Vol. 11. Abel EW, Stone FG. A, Wilkinson G, Davies AG. Elsevier; Oxford: 1995: 515
    • 36b Potash S, Rozen S. Eur. J. Org. Chem. 2013; 19: 5574
  • 37 Hou X, Li X, Sun C, Chen L, Sun Y, Liu Z, Zhang H.-L, Shao X. Chem. Eur. J. 2017; 23: 14375
    • 38a Bunz UH, Engelhart JU, Lindner BD, Schaffroth M. Angew. Chem. Int. Ed. 2013; 52: 3810
    • 38b Miao Q. Adv. Mater. 2014; 26: 5541
    • 38c Bunz UH. Acc. Chem. Res. 2015; 48: 1676
    • 38d Liu YY, Song CL, Zeng WJ, Zhou KG, Shi ZF, Ma CB, Yang F, Zhang H.-L, Gong X. J. Am. Chem. Soc. 2010; 132: 16349
  • 39 Akita M, Seto H, Aoyama R, Kimura J, Kobayashi K. Molecules 2012; 17: 13879
    • 40a Maercker A, Bodenstedt H, Brandsma L. Angew. Chem. Int. Ed. 1992; 31: 1339
    • 40b Iteke FB, Christiaens L, Renson M. Tetrahedron 1976; 32: 689
    • 40c Gronowitz S, Hallberg A, Frejd T. Tetrahedron 1979; 35: 2607
  • 41 Fu B, Hou X, Wang C, Wang Y, Zhang X, Li R, Shao X, Hu W. Chem. Commun. 2017; 53: 11407
  • 42 Fu B, Wang C, Sun Y, Yao J, Wang Y, Ge F, Yang F, Liu Z, Dang Y, Zhang X, Shao X, Li R, Hu W. Adv. Mater. 2019; 31: 1901437
  • 43 Sun J, Sun Y, Yan C, Lin D, Xie Z, Zhou S, Yuan C, Zhang H.-L, Shao X. J. Mater. Chem. C 2018; 6: 13114
  • 44 Geng R, Hou X, Sun Y, Yan C, Wu Y, Zhang H.-L, Shao X. Mater. Chem. Front. 2018; 2: 1456