Synthesis 2020; 52(12): 1738-1750
DOI: 10.1055/s-0039-1690857
short review
© Georg Thieme Verlag Stuttgart · New York

Catalytic Asymmetric Transformations of Racemic Aziridines

Zhuo Chai
MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. of China   eMail: chaizhuo@ahnu.edu.cn
› Institutsangaben
Financial support from the National Natural Science Foundation of China (No. 21971003, 21472001, 21202001) is appreciated.
Weitere Informationen

Publikationsverlauf

Received: 15. November 2019

Accepted after revision: 26. Februar 2020

Publikationsdatum:
16. März 2020 (online)


Abstract

The catalytic asymmetric ring-opening transformations of aziridines represent an important strategy for the construction of various chiral nitrogen-containing molecular architectures. This short review covers the progress achieved in the catalytic asymmetric transformation of racemic aziridines, focusing on the catalytic strategies employed for each different type of such aziridines.

1 Introduction

2 Reaction of Racemic 2-Vinylaziridines

3 Reaction of Racemic 2-Alkylaziridines

3.1 Regiodivergent Parallel Kinetic Resolution

3.2 Kinetic Resolution

4 Reaction of Racemic 2-(Hetero)arylaziridines

4.1 Kinetic Resolution

4.2 Enantioconvergent Transformation

5 Reaction of Racemic Donor–Acceptor-Type Aziridines

6 Conclusion and Outlook

 
  • References


    • For selected reviews, see:
    • 1a Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
    • 1b Padwa A. In Comprehensive Heterocyclic Chemistry III, Vol. 1. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 1
  • 2 Paasche A, Arnone M, Fink RF, Schirmeister T, Engels B. J. Org. Chem. 2009; 74: 5244

    • For select reviews:
    • 3a Tanner D. Angew. Chem., Int. Ed. Engl. 1994; 33: 599
    • 3b McCoull W, Davis FA. Synthesis 2000; 1347
    • 3c Hu XE. Tetrahedron 2004; 60: 2701
    • 3d Singh GS, D’hooghe M, De Kimpe N. Chem. Rev. 2007; 107: 2080
    • 3e Dauban P, Malik G. Angew. Chem. Int. Ed. 2009; 48: 9026
    • 3f Lu P. Tetrahedron 2010; 66: 2549
    • 3g Stanković S, D’hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
    • 3h Cardoso AL, Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2012; 6479
    • 3i Huang CY, Doyle AG. Chem. Rev. 2014; 114: 8153
    • 4a Wang PA. Beilstein J. Org. Chem. 2013; 9: 1677
    • 4b Schneider C. Angew. Chem. Int. Ed. 2009; 48: 2082
    • 4c Pineschi M. Eur. J. Org. Chem. 2006; 4979

    • For reviews on the asymmetric synthesis of chiral aziridines:
    • 4d Degennaro L, Trinchera P, Luisi R. Chem. Rev. 2014; 114: 7881
    • 4e Pellissier H. Adv. Synth. Catal. 2014; 356: 1899
  • 5 For a general review on the chemistry of vinylaziridines: Ohno H. Chem. Rev. 2014; 114: 7784
  • 7 Dong C, Alper H. Tetrahedron: Asymmetry 2004; 15: 1537
    • 8a Xu C.-F, Zheng B.-H, Suo J.-J, Ding C.-H, Hou X.-L. Angew. Chem. Int. Ed. 2015; 54: 1604
    • 8b Li T.-R, Cheng B.-Y, Fan S.-Q, Wang Y.-W, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2016; 22: 6243
    • 8c Næsborg L, Tur F, Meazza M, Blom J, Halskov KS, Jørgensen KA. Chem. Eur. J. 2017; 23: 268
    • 8d Zhang J.-Q, Tong F, Sun B.-B, Fan W.-T, Chen J.-B, Hu D, Wang X.-W. J. Org. Chem. 2018; 83: 2882
    • 8e Suo J.-J, Liu W, Du J, Ding C.-H, Hou X.-L. Chem. Asian J. 2018; 13: 959
  • 9 Arena G, Chen CC, Leonori D, Aggarwal VK. Org. Lett. 2013; 15: 4250
    • 10a Wang G, Franke J, Ngo CQ, Krische MJ. J. Am. Chem. Soc. 2015; 137: 7915
    • 10b Chen Z.-C, Chen Z, Yang Z.-H, Guo L, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2019; 58: 15021
    • 11a Wu B, Parquette JR, RajanBabu TV. Science 2009; 326: 1662
    • 11b Wu B, Gallucci JC, Parquette JR, RajanBabu TV. Chem. Sci. 2014; 5: 1102
    • 11c Xu Y, Kaneko K, Kanai M, Shibasaki M, Matsunaga S. J. Am. Chem. Soc. 2014; 136: 9190
    • 11d Kisan HK, Sunoj RB. ACS Catal. 2018; 8: 7633
    • 12a Ohmatsu K, Hamajima Y, Ooi T. J. Am. Chem. Soc. 2012; 134: 8794
    • 12b Monaco MR, Poladura B, de los Bernardos MD, Leutzsch M, Goddard R, List B. Angew. Chem. Int. Ed. 2014; 53: 7063
    • 13a Cockrell J, Wilhelmsen C, Rubin H, Martin A, Morgan JB. Angew. Chem. Int. Ed. 2012; 51: 9842
    • 13b Wang Y, Liu B.-Y, Yang G, Chai Z. Org. Lett. 2019; 21: 4475
    • 14a Calet S, Urso F, Alper H. J. Am. Chem. Soc. 1989; 111: 931
    • 14b Leung W.-H, Mak W.-L, Chan EY. Y, Lam TC. H, Lee W.-S, Kwong H.-L, Yeung L.-L. Synlett 2002; 1688
    • 15a Huang Y.-M, Zheng C.-W, Pan L, Jin Q.-W, Zhao G. J. Org. Chem. 2015; 80: 10710
    • 15b Yin J, Hyland CJ. T. Asian J. Org. Chem. 2016; 5: 1368
  • 16 Ohmatsu K, Ando Y, Ooi T. J. Am. Chem. Soc. 2013; 135: 18706
  • 17 Moss TA, Fenwick DR, Dixon DJ. J. Am. Chem. Soc. 2008; 130: 10076
    • 18a Chai Z, Zhu Y.-M, Yang P.-J, Wang S, Wang S, Liu Z, Yang G. J. Am. Chem. Soc. 2015; 137: 10088
    • 18b Ge C, Liu R.-R, Gao J.-R, Jia Y.-X. Org. Lett. 2016; 18: 3122
    • 18c Chai Z, Yang P.-J, Zhang H, Wang S, Yang G. Angew. Chem. Int. Ed. 2017; 56: 650
  • 19 Nakagawa M, Kawahara M. Org. Lett. 2000; 2: 953
  • 20 Peruncheralathan S, Aurich S, Teller H, Schneider C. Org. Biomol. Chem. 2013; 11: 2787
  • 21 Zhang F, Zhang Y, Tan Q, Lin L, Liu X, Feng X. Org. Lett. 2019; 21: 5928
    • 22a Woods BP, Orlandi M, Huang C.-Y, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688
    • 22b Woods BP, Orlandi M, Huang C.-Y, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2018; 140: 7744
  • 23 Reid JP, Sigman MS. Nat. Rev. Chem. 2018; 10: 290
  • 24 Fu GC. ACS Cent. Sci. 2017; 3: 692
  • 25 Yang P.-J, Qi L, Liu Z, Yang G, Chai Z. J. Am. Chem. Soc. 2018; 140: 17211
  • 26 For a leading recent review on stereoconvergent catalysis: Bhat V, Welin ER, Guo X, Stoltz BM. Chem. Rev. 2017; 117: 4528
    • 27a Pohlhaus PD, Bowman RK, Johnson JS. J. Am. Chem. Soc. 2004; 126: 2294
    • 27b Li L, Wu X, Zhang J. Chem. Commun. 2011; 47: 5049
    • 27c Liao Y, Zhou B, Xia Y, Liu X, Feng X. ACS Catal. 2017; 7: 3934
    • 28a Wu X, Li L, Zhang J. Chem. Commun. 2011; 47: 7824
    • 28b Wu X, Zhou W, Wu H.-H, Zhang J. Chem. Commun. 2017; 53: 5661
    • 28c Liao Y, Liu X, Zhang Y, Xu Y, Xia Y, Lin L, Feng X. Chem. Sci. 2016; 7: 3775
  • 29 Xu Y, Chang F, Cao W, Liu X, Feng X. ACS Catal. 2018; 8: 10261

    • For selected examples:
    • 30a Hao W, Wu X, Sun JZ, Siu JC, MacMillan SN, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
    • 30b Zhang Y.-Q, Vogelsang E, Qu Z.-W, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 12654
    • 30c Yu X.-Y, Zhou Q.-Q, Wang P.-Z, Liao C.-M, Chen J.-R, Xiao W.-J. Org. Lett. 2018; 20: 421
    • 30d Kang D, Kim T, Lee H, Hong S. Org. Lett. 2018; 20: 7571