Synthesis 2020; 52(09): 1357-1368
DOI: 10.1055/s-0039-1690839
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in Photochemical and Electrochemical Decarboxylative C(sp3)–N Bond Formation

Yue Zheng
,
Xiaoqing Shao
,
Velayudham Ramadoss
,
Lifang Tian
Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: [email protected]   Email: [email protected]
,
Yahui Wang
Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: [email protected]   Email: [email protected]
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant No. 21702105) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170981) for funding.
Further Information

Publication History

Received: 17 January 2020

Accepted after revision: 04 February 2020

Publication Date:
02 March 2020 (online)


Dedicated to Professor Antonio M. Echavarren on the occasion of his 65th birthday

Abstract

Considering the important applications of nitrogen-containing compounds in agrochemical materials and biomolecular drug molecules, research on methods for the construction of C–N bonds quickly and efficiently has become an important topic in synthetic chemistry. Carboxylic acids are inexpensive, stable, and non-toxic substances that are widely present in Nature, which makes them appealing as potential coupling partners for C(sp3)–N bond-forming reactions. Moreover, compared with the well-established transition-metal-catalyzed protocols, the rapid development of photoredox catalysis and electrochemical methods in recent years provides options for chemists to design new synthetic routes. In this short review, we concentrate on the decarboxylative C(sp3)–N coupling reactions mediated by visible light or electricity, with special attention on mechanistic insights.

1 Introduction

2 Photoredox-Mediated Decarboxylative C(sp3)–N Bond Formation

2.1 Intramolecular Decarboxylation

2.2 Intermolecular Decarboxylation

3 Electrochemistry-Induced Decarboxylative C(sp3)–N Bond Formation

3.1 Intramolecular Decarboxylation

3.2 Intermolecular Decarboxylation

4 Conclusions and Outlook

 
  • References

    • 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1b Top 200 Small Molecule Pharmaceuticals by Retail Sales in 2018, Compiled and Produced by the Njarðarson Group, University of Arizona (https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster), see: McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348
    • 1c Urieta-Mora J, Garcia-Benito I, Molina-Ontoria A, Martin N. Chem. Soc. Rev. 2018; 47: 8541
    • 1d Luo J, Wei W.-T. Adv. Synth. Catal. 2018; 360: 2076
    • 1e Song S.-Z, Dong Y, Ge G.-P, Li Q, Wei W.-T. Synthesis 2020; 52: in press; DOI: 10.1055/s0039-1690789
    • 2a Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753
    • 2b Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
    • 3a Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 3b Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 4a Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 4b Creutz SE, Lotito KJ, Fu GC, Peters JC. Science 2012; 338: 647
    • 4c Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 5 Qiao JX, Lam PY. S. Synthesis 2011; 829
    • 6a Hu X. Chem. Sci. 2011; 2: 1867
    • 6b Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 6c Choi J, Fu GC. Science 2017; 356: eaaf7230
  • 7 Advanced Organic Chemistry, Part B: Reactions and Synthesis, 5th ed. Carey FA, Sundberg RJ. Springer, Science+Business Media LLC; New York: 2007: 229-232
  • 8 Gomez S, Peters JA, Maschmeyer T. Adv. Synth. Catal. 2002; 344: 1037
  • 9 Ghosh AK, Brindisi M, Sarkar A. ChemMedChem 2018; 13: 2351
  • 10 Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
    • 11a Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. Acc. Chem. Res. 1995; 28: 154
    • 11b Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 11c Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 11d Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 11e Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 12 Johnson RG, Ingham RK. Chem. Rev. 1956; 56: 219
  • 13 Saraiva MF, Couri MR. C, Hyaric ML, de Almeida MV. Tetrahedron 2009; 65: 3563
    • 14a Rodríguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 14b Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
    • 14c Cornella J, Larrosa I. Synthesis 2012; 44: 653
    • 14d Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 14e Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 14f Schwarz J, Konig B. Green Chem. 2018; 20: 323
    • 14g Arshadi S, Ebrahimiasl S, Hosseinian A, Monfared A, Vessally E. RSC Adv. 2019; 9: 8964
    • 14h Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Adv. Synth. Catal. 2019; 361: 2161
    • 14i Moon PJ, Lundgren RJ. ACS Catal. 2020; 10: 1742
    • 14j Daley RA, Topczewski JJ. Synthesis 2020; 52: 365
    • 15a Kiyokawa K, Yahata S, Kojima T, Minakata S. Org. Lett. 2014; 16: 4646
    • 15b Liu C, Wang X, Li Z, Cui L, Li C. J. Am. Chem. Soc. 2015; 137: 9820
    • 15c Zhu Y, Li X, Wang X, Huang X, Shen T, Zhang Y, Sun X, Zou M, Song S, Jiao N. Org. Lett. 2015; 17: 4702
    • 15d Liu Z.-J, Lu X, Wang G, Li L, Jiang W.-T, Wang Y.-D, Xiao B, Fu Y. J. Am. Chem. Soc. 2016; 138: 9714
    • 15e Fang Z, Feng Y, Dong H, Li D, Tang T. Chem. Commun. 2016; 52: 11120
    • 15f Kong D, Moon PJ, Bsharat O, Lundgren RJ. Angew. Chem. Int. Ed. 2020; 59: 1313
    • 16a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 16b Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DW. C. Science 2017; 355: 380
    • 16c Le C, Liang Y, Evans RW, Li X, MacMillan DW. C. Nature 2017; 547: 79
  • 17 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 18a Grabowski ZR, Rotkiewicz K, Rettig W. Chem. Rev. 2003; 103: 3899
    • 18b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 19a Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
    • 19b Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
    • 19c Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
    • 20a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 20b Zhao Y, Xia W. Chem. Soc. Rev. 2018; 47: 2591
    • 20c Karkas MD. Chem. Soc. Rev. 2018; 47: 5786
    • 20d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 20e Mohle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
    • 20f Lei A, Yuan Y. Acc. Chem. Res. 2019; 52: 3309
    • 20g Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 20h Leech MC, Lam K. Acc. Chem. Res. 2020; 53: 121
    • 20i Yamamoto K, Kuriyama M, Onomura O. Acc. Chem. Res. 2020; 53: 105
    • 20j Ackermann L. Acc. Chem. Res. 2020; 53: 84
  • 23 Xiang J, Shang M, Kawamata Y, Lundberg H, Reisberg S, Chen M, Mykhailiuk P, Beutner G, Collins M, Davies A, Bel MD, Gallego G, Spangler J, Starr JT, Yang S, Blackmond D, Baran PS. Nature 2019; 573: 398
  • 24 Yoshimi Y. J. Photochem. Photobiol. A 2017; 342: 116
    • 25a Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 25b Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
    • 26a Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan C.-M, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
    • 26b Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
    • 26c Toriyama F, Cornella J, Wimmer L, Chen T.-G, Dixon DD, Creech G, Baran PS. J. Am. Chem. Soc. 2016; 138: 11132
    • 26d Jin Y, Yang H, Fu H. Chem. Commun. 2016; 52: 12909
    • 26e Edwards JT, Merchant RR, McClymont KS, Knouse KW, Qin T, Malins LR, Vokits B, Shaw SA, Bao D.-H, Wei F.-L, Zhou T, Eastgate MD, Baran PS. Nature 2017; 545: 213
    • 26f Huang L, Olivares AM, Weix DJ. Angew. Chem. Int. Ed. 2017; 56: 11901
    • 26g Liu Y, Xue L, Shi B, Bu F, Wang D, Lu L, Shi R, Lei A. Chem. Commun. 2019; 55: 14922
    • 26h Guo J.-Y, Zhang Z.-Y, Guan T, Mao L.-W, Ban Q, Zhao K, Loh T.-P. Chem. Sci. 2019; 10: 8792
    • 27a Mao R, Balon J, Hu X. Angew. Chem. Int. Ed. 2018; 57: 13624
    • 27b Jin S, Haug GC, Nguyen VT, Flores-Hansen C, Arman HD, Larionov OV. ACS Catal. 2019; 9: 9764
    • 27c Shibutani S, Kodo T, Takeda M, Nagao K, Tokunaga N, Sasaki Y, Ohmiya H. J. Am. Chem. Soc. 2020; 142: 1211
    • 28a Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: 7355
    • 28b Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
    • 28c Candish L, Teders M, Glorius F. J. Am. Chem. Soc. 2017; 139: 7440
    • 28d Hu D, Wang L, Li P. Org. Lett. 2017; 19: 2770
    • 28e Xue W, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 11649
  • 29 Zhao W, Wurz RP, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
  • 30 Kiyokawa K, Watanabe T, Fra L, Kojima T, Minakata S. J. Org. Chem. 2017; 82: 11711
    • 31a Guérinot A, Reymond S, Cossy J. Eur. J. Org. Chem. 2012; 19
    • 31b Jiang D, He T, Ma L, Wang Z. RSC Adv. 2014; 4: 64936
  • 32 Kiyokawa K, Takemoto K, Minakata S. Chem. Commun. 2016; 52: 13082
  • 33 Mao R, Frey A, Balon J, Hu X. Nat. Catal. 2018; 1: 120
  • 34 Jamison CR, Overman LE. Acc. Chem. Res. 2016; 49: 1578
  • 35 Zhang H, Zhang P, Jiang M, Yang H, Fu H. Org. Lett. 2017; 19: 1016
  • 36 Liang Y, Zhang X, MacMillan DW. C. Nature 2018; 559: 83
  • 37 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
  • 38 Tran BL, Li B, Driess M, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 2555
  • 39 Sakakibara Y, Ito E, Fukushima T, Murakami K, Itami K. Chem. Eur. J. 2018; 24: 9254
  • 40 Ito E, Fukushima T, Kawakami T, Murakami K, Itami K. Chem 2017; 2: 383
  • 41 Marcote DC, Street-Jeakings R, Dauncey E, Douglas JJ, Ruffoni A, Leonori D. Org. Biomol. Chem. 2019; 17: 1839
    • 42a Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 42b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 43a Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Bolz JT. J. Am. Chem. Soc. 1996; 118: 5192
    • 43b Weidner K, Renaud P. Aust. J. Chem. 2013; 66: 341
  • 44 Seebach D, Charczuk R, Gerber C, Renaud P, Berner H, Schneider H. Helv. Chim. Acta 1989; 72: 401
  • 45 Thomas HG. Angew. Chem. Int. Ed. 1971; 10: 557
    • 46a Yoshida J.-i, Suga S, Suzuki S, Kinomura N, Yamamoto A, Fujiwara K. J. Am. Chem. Soc. 1999; 121: 9546
    • 46b Shoji T, Kim S, Chiba K. Angew. Chem. Int. Ed. 2017; 56: 4011
    • 46c Yoshida J.-i, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
    • 46d Shao X, Tian L, Wang Y. Eur. J. Org. Chem. 2019; 4089
    • 46e Xu Z, Zheng Y, Wang Z, Shao X, Tian L, Wang Y. Chem. Commun. 2019; 55: 15089
    • 46f Yang Y.-Z, Song R.-J, Li J.-H. Org. Lett. 2019; 21: 3228
  • 47 Shao X, Zheng Y, Tian L, Torres IM, Echavarren AM, Wang Y. Org. Lett. 2019; 21: 9262
    • 48a Shida N, Zhou Y, Inagi S. Acc. Chem. Res. 2019; 52: 2598
    • 48b Noel T, Cao Y, Laudadio G. Acc. Chem. Res. 2019; 52: 2858
  • 49 Yu Y, Guo P, Zhong J.-S, Yuan Y, Ye K.-Y. Org. Chem. Front. 2020; 7: 131