Synthesis 2020; 52(15): 2196-2223
DOI: 10.1055/s-0039-1690833
paper
© Georg Thieme Verlag Stuttgart · New York

Application of the Intramolecular Diels–Alder Vinylarenе (IMDAV) Approach for the Synthesis of Thieno[2,3-f]isoindoles

Maryana A. Nadirova
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Yevhen-Oleh V. Laba
b  Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., Lviv 79005, Ukraine
,
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Julya S. Sokolova
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Kuzma M. Pokazeev
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Victoria A. Anokhina
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Victor N. Khrustalev
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
g  Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
,
Yuriy I. Horak
b  Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., Lviv 79005, Ukraine
,
Roman Z. Lytvyn
b  Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., Lviv 79005, Ukraine
,
Miłosz Siczek
c  Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland   Email: milosz.siczek@uwr.edu.pl
,
d  Institute of Low Temperature and Structure Research, PAS, Okólna 2, 50-422 Wrocław, Poland   Email: kinzhybalo@gmail.com
,
Yan V. Zubavichus
e  National Research Centre ‘Kurchatov Institute’, Moscow 123182, Russian Federation
,
Maxim L. Kuznetsov
f  Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal   Email: max@mail.ist.utl.pt
,
Mykola D. Obushak
b  Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., Lviv 79005, Ukraine
,
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
› Author Affiliations
Funding for this research was provided by the Ministry of Education and Science of the Russian Federation (award no. 4.1154.2017/4.6). DFT calculation part of this work has been supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal, project UIDB/00100/2020 of Centro de Química Estrutural.
Further Information

Publication History

Received: 11 December 2019

Accepted after revision: 31 January 2020

Publication Date:
12 March 2020 (online)


Abstract

3-(Thien-2-yl)- and 3-(thien-3-yl)allylamines, readily accessible from the corresponding thienyl aldehydes, can interact with a broad range of anhydrides and α,β-unsaturated acids chlorides (maleic, сitraconic­, and phenyl maleic anhydrides, сrotonyl and сinnamyl chlorides, etc.) leading to the formation of a thieno[2,3-f]isoindole core. Usually, the reaction sequence involves three successive steps: acylation of the nitrogen atom of the initial allylamine, the intramolecular Diels–Alder vinylarenе (IMDAV) reaction, and the final aromatization of the dihydrothiophene ring in the Diels–Alder adducts. The scope and limitations of the proposed method were thoroughly investigated. It was revealed with the aid of X-ray analysis that the key step, the IMDAV reaction, proceeds through an exo-transition state, giving rise to the exclusive formation of a single diastereomer of the target heterocycle. In the case of maleic anhydrides, the method allows to obtain functionally substituted thieno[2,3-f]isoindole carboxylic acids, which are potentially useful substrates for further transformations and subsequent bioscreening.

Supporting Information

 
  • References

    • 1a Behr A, Vorholt AJ, Ostrowski KA, Seidensticker T. Green Chem. 2014; 16: 982
    • 1b Parsons PJ, Penkett CS, Shell AJ. Chem. Rev. 1996; 96: 195
    • 2a Pemberton N, Mogemark M, Arlbrandt S, Bold P, Cox RJ, Gardelli C, Holden NS, Karabelas K, Karlsson J, Lever S, Li X, Lindmark H, Norberg M, Perry MW. D, Petersen J, Blomqvist SR, Thomas MJ, Tyrchan C, Eriksson AW, Zlatoidsky P, Öster L. J. Med. Chem. 2018; 61: 5435
    • 2b Mariaule G, De Cesco S, Airaghi F, Kurian J, Schiavini P, Rocheleau S, Huskić I, Auclair K, Mittermaier A, Moitessier N. J. Med. Chem. 2016; 59: 4221
    • 2c Mishra R, Sachan N, Kumar N, Mishra I, Chand I. J. Heterocycl. Chem. 2018; 55: 2019
    • 2d Jaroskova, L.; Linders, J. T. M.; Van der Veken, L. J. E.; Willemsens, G. H. M. (Janssen Pharmaceutica N. V.) WO2006/24628, 2006 .
    • 2e Vakuliuk O, Ooi S, Deperasińska I, Staszewska-Krajewska O, Banasiewicz M, Kozankiewicz B, Danylyuk O, Gryko DT. Chem. Commun. 2017; 53: 11877
    • 2f Ramos AC, Peláez R, López JL, Caballero E, Medarde M, Feliciano AS. Tetrahedron 2001; 57: 3963
    • 2g Johnson MR, Fairfax D, Johnson G, McCall JM, Barnes KD, Heemskerk J. US8110681B2, 2013
    • 3a Ramos AC, Peláez-Lamamié de Clairac R, Medarde M. Heterocycles 1999; 51: 1443
    • 3b Ward RS. Nat. Prod. Rep. 1999; 16: 75
    • 3c Eymin B, Solary E, Chevillard S, Dubrez L, Goldwasser F, Duchamp O, Genne P, Leteurtre F, Pommier Y. Int. J. Cancer 1995; 63: 268
    • 3d Tepe JJ, Madalengoitia JS, Slunt KM, Werbovetz KW, Spoors PG, Macdonald TL. J. Med. Chem. 1996; 39: 2188
    • 3e Rifai Y, Tani HB, Nur M, Aswad M, Lallo S, Wahyudin E. Arch. Pharm. 2016; 349: 848
    • 3f Frackenpohl J, Adelt I, Antonicek H, Arnold C, Behrmann P, Blaha N, Böhmer J, Gutbrod O, Hanke R, Hohmann S, van Houtdreve M, Lösel P, Malsam O, Melchers M, Neufert V, Peschel E, Reckmann U, Schenke T, Thiesen HP, Velten R, Vogelsang K, Weiss HC. Bioorg. Med. Chem. 2009; 17: 4160
    • 3g Ramos AC, Peláez R, López JL, Caballero E, Medarde M, San Feliciano A. Tetrahedron 2001; 57: 3963
    • 3h Merchan Arenas DR, Rojas Ruíz FA, Kouznetsov VV. Tetrahedron Lett. 2011; 52: 1388
    • 3i Medarde M, Ramos AC, Caballero E, López JL, Peláez-Lamamié de Clairac R, San Feliciano A. Tetrahedron Lett. 1998; 39: 2001
    • 3j Sarkar TK, Panda N, Basak S. J. Org. Chem. 2003; 68: 6919
    • 3k Tilve SG, Torney PS, Patre RE, Kamat DP, Srinivasan BR, Zubkov FI. Tetrahedron Lett. 2016; 57: 2266
    • 3l Huang L, Ye L, Li X.-H, Li Z.-L, Lin J.-S, Liu X.-Y. Org. Lett. 2016; 18: 5284
    • 3m Li J, Zhang X, Renata H. Angew. Chem. Int. Ed. 2019; 58: 1
    • 4a Zubkov FI, Zaytsev VP, Mertsalov DF, Nikitina EV, Horak YI, Lytvyn RZ, Homza YV, Obushak MD, Dorovatovskii PV, Khrustalev VN, Varlamov AV. Tetrahedron 2016; 72: 2239
    • 4b Voronov AA, Alekseeva KA, Ryzhkova EA, Zarubaev VV, Galochkina AV, Zaytsev VP, Majik MS, Tilve SG, Gurbanov AV, Zubkov FI. Tetrahedron Lett. 2018; 59: 1108
    • 4c Horak YI, Lytvyn RZ, Laba Y.-OV, Homza YV, Zaytsev VP, Nadirova MA, Nikanorova TV, Zubkov FI, Varlamov AV, Obushak MD. Tetrahedron Lett. 2017; 58: 4103
    • 5a Kim KH, Lim JW, Moon HR, Kim JN. Bull. Korean Chem. Soc. 2014; 35: 3254
    • 5b Maas G, Reinhard R, Herz H.-G. Z. Naturforsch., B 2006; 61: 385
    • 5c Sha C.-K, Hsu H.-Y, Cheng S.-Y, Kuo Y.-L. Tetrahedron 2003; 59: 1477
    • 5d van den Berg KJ, van Leusen AM. Recl. Trav. Chim. Pays-Bas 1993; 112: 7
    • 5e Chaloner LM, Crew AP. A, O’Neill PM, Storr RC, Yelland M. Tetrahedron 1992; 48: 8101
    • 5f Chou T.-S, Tsai C.-Y. J. Chem. Soc., Chem. Commun. 1991; 1287
    • 5g Dyker G, Kreher RP. Chem. Ber. 1988; 121: 1203
    • 5h Sha CK, Tsou CP. J. Org. Chem. 1990; 55: 2446
    • 5i Ko C.-W, Chou T.-s. J. Org. Chem. 1998; 63: 4645
    • 5j Fichtler R, Neudörfl J.-M, von Wangelin AJ. Org. Biomol. Chem. 2011; 9: 7224
    • 5k Chadwick DJ, Plant A. Tetrahedron Lett. 1987; 28: 6085
    • 5l Huang J, Du X, Van Hecke K, Van der Eycken EV, Pereshivko OP, Peshkov VA. Eur. J. Org. Chem. 2017; 4379
    • 5m Lu K, Luo T, Xiang Z, You Z, Fathi R, Chen J, Yang Z. J. Comb. Chem. 2005; 7: 958
    • 6a Steen RO, Nurkkala LJ, Angus-Dunne SJ, Schmitt CX, Constable EC, Riley MJ, Bernhardt PV, Dunne SJ. Eur. J. Inorg. Chem. 2008; 1784
    • 6b Braude EA, Fawcett JS, Newman DD. E. J. Chem. Soc. 1952; 4155
    • 6c Keskin H, Miller RF, Nord FN. J. Org. Chem. 1951; 16: 199
  • 7 Kanibolotsky AL, Forgie JC, McEntee GJ, Talpur MM. M, Skabara PJ, Westgate TD. J, McDouall JJ. W, Auinger M, Coles SJ, Hursthouse MB. Chem. Eur. J. 2009; 15: 11581
  • 8 Chadwick DJ, Chambers J, Hodgson PK. G, Meakins GD, Snowden RL. J. Chem. Soc., Perkin Trans. 1 1974; 1141
  • 9 Toze FA. A, Nadirova MA, Mertsalov DF, Sokolova JS, Dorovatovskii PV, Khrustalev VN. Acta Crystallogr., Sect. E 2018; 74: 1400

    • Computational details: Full geometry optimization of all structures and transition states was carried out at the DFT level of theory by using the M06-2X functional, see:
    • 10a Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215

    • The 6-311++G** basis was set with the help of the Gaussian 09 program package:
    • 10b Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.01 . Gaussian, Inc; Wallingford CT: 2009. The optimization included the solvent effect correction calculated using the IEFPCM model with toluene taken as solvent. No symmetry operations were applied. The Hessian matrix was calculated analytically for the optimized structures to prove the location of correct minima (no imaginary frequencies) or saddle points (only one imaginary frequency) and to estimate the thermodynamic parameters, with the latter calculated at 25 °C
    • 10c Barone V, Cossi M. J. Phys. Chem. A 1998; 102: 1995
    • 10d Scalmani G, Frisch MJ. J. Chem. Phys. 2010; 132: 114110
    • 11a Marchionni C, Vogel P, Roversi P. Tetrahedron Lett. 1996; 37: 4149
    • 11b Schwenter M.-E, Schenk K, Scopelliti R, Vogel P. Heterocycles 2002; 57: 1513
    • 11c Oh CH, Yi HJ, Lee KH. Bull. Korean Chem. Soc. 2010; 31: 683
    • 11d Criado A, Peña D, Cobas A, Guitián E. Chem. Eur. J. 2010; 16: 9736
    • 11e Paquette LA, Wyvratt MJ, Berk HC, Moerck RE. J. Am. Chem. Soc. 1978; 100: 5845
    • 11f Visnick M, Battiste MA. J. Chem. Soc., Chem. Commun. 1985; 1621
    • 11g Borisova KK, Kvyatkovskaya EA, Nikitina EV, Aysin RR, Novikov RA, Zubkov FI. J. Org. Chem. 2018; 83: 4840
    • 11h Borisova KK, Nikitina EV, Novikov RA, Khrustalev VN, Dorovatovskii PV, Zubavichus YV, Kuznetsov ML, Zaytsev VP, Varlamov AV, Zubkov FI. Chem. Commun. 2018; 54: 2850
    • 12a Bilović D. Croat. Chem. Acta 1968; 40: 15
    • 12b Murali R, Rao HS. P, Scheeren HE. Tetrahedron 2001; 57: 3165
    • 12c Zubkov FI, Zaytsev VP, Nikitina EV, Khrustalev VN, Gozun SV, Boltukhina EV, Varlamov AV. Tetrahedron 2011; 67: 9148
  • 13 Blanpain A, Clark JH, Farmer TJ, Guo Y, Ingram ID. V, Kendrick JE, Lawrenson SB, North M, Rodgers G, Whitwood AC. ChemSusChem 2019; 12: 2393
  • 14 Liu Y, Cai L, Xu S, Pu W, Tao X. Chem. Commun. 2018; 54: 2166