Synthesis 2020; 52(07): 993-1006
DOI: 10.1055/s-0039-1690816
short review
© Georg Thieme Verlag Stuttgart · New York

Directing-Group-Assisted Transition-Metal-Catalyzed Direct C–H Oxidative Annulation of Arenes with Alkynes for Facile Construction of Various Oxygen Heterocycles

Guanghua Kuang
a  Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, P. R. of China   Email: yiyuanpeng@jxnu.edu.cn
,
Guangyuan Liu
a  Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, P. R. of China   Email: yiyuanpeng@jxnu.edu.cn
,
Xingxing Zhang
a  Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, P. R. of China   Email: yiyuanpeng@jxnu.edu.cn
,
Naihao Lu
a  Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, P. R. of China   Email: yiyuanpeng@jxnu.edu.cn
,
Yiyuan Peng
a  Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, P. R. of China   Email: yiyuanpeng@jxnu.edu.cn
,
Qiang Xiao
c  Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, No. 605 Fenglin Road, Nanchang 330013, P. R. of China   Email: xiaoqiang@tsinghua.org.cn
,
Yirong Zhou
a  Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, P. R. of China   Email: yiyuanpeng@jxnu.edu.cn
b  Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, P. R. of China   Email: zhouyirong@jxnu.edu.cn
› Author Affiliations
This work was financially supported by grants from the National Natural Science Foundation of China (No. 21602089), the Natural Science Foundation of Jiangxi Province (No. 20181BAB203004), the Fundamental Research Funds for the Central Universities (No. 2020kfyXJJS044), Open Project Program of Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University (No. 2019001), Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (No. KLFS-KF-201914).
Further Information

Publication History

Received: 18 December 2019

Accepted after revision: 19 January 2020

Publication Date:
10 February 2020 (online)


Abstract

The most recent advances in the construction of oxygen heterocycles by the directing-group-assisted transition-metal-catalyzed direct oxidative annulation of arenes with diverse alkynes are summarized in this review. More than 140 recent research papers and many closely related reviews are referenced in this paper. Nine different oxygen heterocycles frameworks are discussed. Several traditional transition-metal catalysts as well as some classical non-noble metals are utilized to promote the annulation. Three plausible controlling models are disclosed to clarify the excellent regioselectivity outcomes achieved in case of unsymmetrical alkyne substrates.

1 Introduction

2 Coumarins

3 I socoumarins and Their Analogues

4 2-Pyrones and Their Analogues

5 Chromones and Chroman-4-ones

6 Chromenes and Isochromenes

7 Fused Polycyclic Oxygen Heteroaromatics

8 Benzofurans, Dihydrobenzofurans, and Furans

9 Phthalides and Benzofuranones

10 Benzoxepines

11 Conclusion

 
  • References

    • 1a Novák Z, Kotschy A. Top. Heterocycl. Chem. 2016; 45: 231
    • 1b Miyabe H. Molecules 2015; 20: 12558
    • 1c Helguera AM, Pérez-Machado G, Cordeiro MN. D. S, Borges F. Mini-Rev. Med. Chem. 2012; 12: 907
    • 1d Majumdar KC, Debnath P, Roy B. Heterocycles 2009; 78: 2661
    • 1e Ziegert RE, Toräng J, Knepper K, Bräse S. J. Comb. Chem. 2005; 7: 147
    • 2a C–H Activation . In Topics in Current Chemistry, Vol. 292. Yu J.-Q, Shi ZJ. Springer; Heidelberg: 2010
    • 2b Ackermann L. Acc. Chem. Res. 2020; 53: 84
    • 2c Khake SM, Chatani N. Trends Chem. 2019; 1: 524
    • 2d Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 2e Wang C, Dixneuf PH, Soulé J. Chem. Rev. 2018; 118: 7532
    • 2f Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 3a Duarah G, Kaishap PP, Begum T, Gogoi S. Adv. Synth. Catal. 2019; 361: 654
    • 3b Zheng L, Hua R. Chem. Rec. 2018; 18: 556
    • 3c Minami Y, Hiyama T. Tetrahedron Lett. 2018; 59: 781
    • 3d Yang Y, Li K, Cheng Y, Wan D, Li M, You J. Chem. Commun. 2016; 52: 2872
    • 3e Muthusamy S, Kumarswamyreddy N, Kesavan V, Chandrasekaran S. Tetrahedron Lett. 2016; 57: 5551
    • 3f Qian H, Zhao W, Sun J. Chem. Rec. 2014; 14: 1070
    • 4a Neto JS. S, Zeni G. Org. Chem. Front. 2020; 7: 155
    • 4b Hou Z, Mao Z, Xu H. Synlett 2017; 28: 1867
    • 4c Agasti S, Dey A, Maiti D. Chem. Commun. 2017; 53: 6544
    • 4d Guo T, Huang F, Yu L, Yu Z. Tetrahedron Lett. 2015; 56: 296
    • 4e He R, Huang Z, Zheng Q, Wang C. Tetrahedron Lett. 2014; 55: 5705
  • 5 Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 6a Thakur A, Singla R, Jaitak V. Eur. J. Med. Chem. 2015; 101: 476
    • 6b Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, Garcíaa AG. T, Osegueda-Roblesa S. Nat. Prod. Rep. 2015; 32: 1472
    • 7a Trost BM, Toste FD, Greenman K. J. Am. Chem. Soc. 2003; 125: 4518
    • 7b Kitamura T, Oyamada J, Tsubota T. Nat. Protoc. 2007; 2: 845
    • 7c Tang B, Wang M, Ma J, Wang Z, Wu Y, Wu A. Adv. Synth. Catal. 2018; 360: 4023
  • 8 Zhu F, Li Y, Wang Z, Wu X. Angew. Chem. Int. Ed. 2016; 55: 14151
  • 9 Nakai K, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2011; 133: 11066
    • 10a Zhao Y, Han F, Yang L, Xia C. Org. Lett. 2015; 17: 1477
    • 10b Gao Y, Zeng F, Sun X, Zeng M, Yang Z, Huang X, Shen G, Tan Y, Feng R, Qi C. Adv. Synth. Catal. 2018; 360: 1328
  • 11 Zeng H, Li C. Angew. Chem. Int. Ed. 2014; 53: 13862
    • 12a Saddiqa A, Usman M, Cakmak O. Turk. J. Chem. 2017; 41: 153
    • 12b Saeed A. Eur. J. Med. Chem. 2016; 116: 290
    • 12c Pochet L, Frédérick R, Masereel B. Curr. Pharm. Des. 2004; 10: 3781
    • 12d Saikia P, Gogoi S. Adv. Synth. Catal. 2018; 360: 2063
    • 13a Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
    • 13b Ueura K, Satoh T, Miura M. J. Org. Chem. 2007; 72: 5362
    • 13c Unoh Y, Hirano K, Satoh T, Miura M. Tetrahedron 2013; 69: 4454
  • 14 Li Q, Yan Y, Wang X, Gong B, Tang X, Shi J, Xu HE, Yi W. RSC Adv. 2013; 3: 23402
  • 15 Kudo E, Shibata Y, Yamazaki M, Masutomi K, Miyauchi Y, Fukui M, Sugiyama H, Uekusa H, Satoh T, Miura M, Tanaka K. Chem. Eur. J. 2016; 22: 14190
  • 16 Liu X, Gao H, Zhang S, Li Q, Wang H. ACS Catal. 2017; 7: 5078
  • 17 Han T, Deng H, Yu CY. Y, Gui C, Song Z, Kwok RT. K, Lam JW. Y, Tang BZ. Polym. Chem. 2016; 7: 2501
  • 18 Chinnagolla RK, Jeganmohan M. Chem. Commun. 2012; 48: 2030
    • 19a Ackermann L, Pospech J, Graczyk K, Rauch K. Org. Lett. 2012; 14: 930
    • 19b Warratz S, Kornhaaß C, Cajaraville A, Niepötter B, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 5513
    • 19c Qiu Y, Tian C, Massignan L, Rogge T, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5818
  • 20 Yedage SL, Bhanage BM. Green Chem. 2016; 18: 5635
  • 21 Frasco DA, Lilly CP, Boyle PD, Ison EA. ACS Catal. 2013; 3: 2421
  • 22 Mandal R, Sundararaju B. Org. Lett. 2017; 19: 2544
    • 23a Funes-Ardoiz I, Maseras F. Chem. Eur. J. 2018; 24: 12383
    • 23b Yu J, Zhang S, Hong X. J. Am. Chem. Soc. 2017; 139: 7224
    • 23c Jiang J, Liu H, Cao L, Zhao C, Liu Y, Ackermann L, Ke Z. ACS Catal. 2019; 9: 9387
    • 23d Kumar NY. P, Rogge T, Yetra SR, Bechtoldt A, Clot E, Ackermann L. Chem. Eur. J. 2017; 23: 17449
    • 24a Dalvi PB, Lin K, Kulkarni MV, Sun C. Org. Lett. 2016; 18: 3706
    • 24b Wu T, Dhole S, Selvaraju M, Sun C. ACS Comb. Sci. 2018; 20: 156
    • 24c Dhole S, Liao J, Kumar S, Salunke DB, Sun C. Adv. Synth. Catal. 2018; 360: 942
  • 25 Deponti M, Kozhushkov SI, Yufitb DS, Ackermann L. Org. Biomol. Chem. 2013; 11: 142
    • 26a Jiang G, Li J, Zhu C, Wu W, Jiang H. Org. Lett. 2017; 19: 4440
    • 26b Nguyen TT, Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2018; 57: 1688
    • 27a Liu G, Kuang G, Zhang X, Lu N, Fu Y, Peng Y, Zhou Y. Org. Lett. 2019; 21: 3043
    • 27b Song L, Xiao J, Dong W, Peng Z, An D. Eur. J. Org. Chem. 2017; 341
    • 28a Lu Q, Mondal S, Cembellín S, Greßies S, Glorius F. Chem. Sci. 2019; 10: 6560
    • 28b Sihag P, Jeganmohan M. J. Org. Chem. 2019; 84: 2699
    • 29a Mo J, Wang L, Cui X. Org. Lett. 2015; 17: 4960
    • 29b Li XG, Liu K, Zou G, Liu PN. Adv. Synth. Catal. 2014; 356: 1496
    • 30a Tan H, Li H, Wang J, Wang L. Chem. Eur. J. 2015; 21: 1904
    • 30b Luo M, Zhang T, Cai F, Li J, He D. Chem. Commun. 2019; 55: 7251
    • 31a Kajita Y, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2008; 130: 17226
    • 31b Xie H, Sun Q, Ren G, Cao Z. J. Org. Chem. 2014; 79: 11911
    • 31c Prakash R, Shekarrao K, Gogoi S, Boruah RC. Chem. Commun. 2015; 51: 9972
    • 32a Youn SW, Yoo HJ. Adv. Synth. Catal. 2017; 359: 2176
    • 32b Tao L, Li C, Chen J, Liu H. J. Org. Chem. 2019; 84: 6807
  • 33 Yedage SL, Bhanage BM. J. Org. Chem. 2017; 82: 5769
  • 34 Shimizu M, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 3478
  • 35 Banerjee A, Santra SK, Mohanta PR, Patel BK. Org. Lett. 2015; 17: 5678
  • 36 Kaishap PP, Sarmab B, Gogoi S. Chem. Commun. 2016; 52: 9809
  • 37 Mayakrishnan S, Arun Y, Maheswari NU, Perumal PT. Chem. Commun. 2018; 54: 11889
  • 38 Huang L, Biafora A, Zhang G, Bragoni V, Gooßen LJ. Angew. Chem. Int. Ed. 2016; 55: 6933
  • 39 Yang Z, Pi C, Cui X, Wu Y. Org. Chem. Front. 2019; 6: 2897
    • 40a Qi Z, Wang M, Li X. Chem. Commun. 2014; 50: 9776
    • 40b Unoh Y, Hashimoto Y, Takeda D, Hirano K, Satoh T, Miura M. Org. Lett. 2013; 15: 3258
    • 40c Seo J, Park Y, Jeon I, Ryu T, Park S, Lee PH. Org. Lett. 2013; 15: 3358
    • 40d Park Y, Seo J, Park S, Yoo EJ, Lee PH. Chem. Eur. J. 2013; 19: 16461
    • 40e Park Y, Jeon I, Shin S, Min J, Lee PH. J. Org. Chem. 2013; 78: 10209
    • 40f Qiao M, Liu Y, Yao S, Ma T, Tang Z, Shi D, Xiao W. J. Org. Chem. 2019; 84: 6798
    • 41a Prendergast AM, McGlacken GP. Eur. J. Org. Chem. 2018; 6068
    • 41b Lee JS. Mar. Drugs 2015; 13: 1581
    • 41c McGlacken GP, Fairlamb IJ. S. Nat. Prod. Rep. 2005; 22: 369
    • 42a Mochida S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 6295
    • 42b Prakash R, Shekarrao K, Gogoi S. Org. Lett. 2015; 17: 5264
    • 42c Li Y, Zhu Y, Tu G, Zhang J, Zhao Y. Chem. Asian J. 2018; 13: 3281
    • 42d Yu Y, Huang L, Wu W, Jiang H. Org. Lett. 2014; 16: 2146
    • 42e Yang Q, Xing Y, Wang X, Ma H, Weng X, Yang X, Guo H, Mei T. J. Am. Chem. Soc. 2019; 141: 18970
  • 43 Itoh M, Shimizu M, Hirano K, Satoh T, Miura M. J. Org. Chem. 2013; 78: 11427
  • 44 Matsuda T, Suzuki K. RSC Adv. 2014; 4: 37138
    • 45a Luo T, Dai M, Zheng S, Schreiber SL. Org. Lett. 2011; 13: 2834
    • 45b Manikandan R, Jeganmohan M. Org. Lett. 2014; 16: 652
    • 46a Singh KS, Sawant SG, Dixneuf PH. ChemCatChem 2016; 8: 1046
    • 46b Ruiz S, Carrera C, Villuendas P, Urriolabeitia EP. Org. Biomol. Chem. 2017; 15: 8904
    • 46c Singh KS, Sawan SG, Kaminsky W. J. Chem. Sci. 2018; 130: 120
    • 46d Yugandar S, Nakamura H. Chem. Commun. 2019; 55: 8382
    • 47a Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chem. Rev. 2014; 114: 4960
    • 47b Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Eur. J. Med. Chem. 2014; 78: 340
    • 47c Emami S, Ghanbarimasir Z. Eur. J. Med. Chem. 2015; 93: 539
    • 47d Silva CF. M, Pinto DC. G. A, Silva AM. S. ChemMedChem 2016; 11: 2252
    • 47e Reis J, Gaspar A, Milhazes N, Borges F. J. Med. Chem. 2017; 60: 7941
    • 48a Skouta R, Li C. Angew. Chem. Int. Ed. 2007; 46: 1117
    • 48b Skouta R, Li C. Tetrahedron Lett. 2007; 48: 8343
    • 49a Baruah S, Kaishap PP, Gogoi S. Chem. Commun. 2016; 52: 13004
    • 49b Raja GC. E, Ryu JY, Lee J, Lee S. Org. Lett. 2017; 19: 6606
  • 50 Du X, Stanley LM. Org. Lett. 2015; 17: 3276
  • 51 Yang J, Yoshikai N. Angew. Chem. Int. Ed. 2016; 55: 2870
  • 52 Zhu F, Wang Z, Li Y, Wu X. Chem. Eur. J. 2017; 23: 3276
    • 53a Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
    • 53b Majumdar N, Paul ND, Mandal S, de Bruin B, Wulff WD. ACS Catal. 2015; 5: 2329
    • 54a Fukui M, Hoshino Y, Satoh T, Miura M, Tanaka K. Adv. Synth. Catal. 2014; 356: 1638
    • 54b Nakanowatari S, Ackermann L. Chem. Eur. J. 2014; 20: 5409
  • 55 Zhao Y, Yu C, Wang T, She Z, Zheng X, You J, Gao G. Org. Lett. 2018; 20: 1074
  • 56 Tochigi A, Tsukamoto K, Suzuki N, Masuyama Y. Eur. J. Org. Chem. 2016; 5678
  • 57 Romanov-Michailidis F, Ravetz BD, Paley DW, Rovis T. J. Am. Chem. Soc. 2018; 140: 5370
  • 58 Jiang G, Fang S, Hu W, Li J, Zhu C, Wu W, Jiang H. Adv. Synth. Catal. 2018; 360: 2297
    • 59a Dooley JD, Lam HW. Chem. Eur. J. 2018; 24: 4050
    • 59b Burns DJ, Lam HW. Angew. Chem. Int. Ed. 2014; 53: 9931
    • 60a Stępień M, Gońka E, Żyła M, Sprutta N. Chem. Rev. 2017; 117: 3479
    • 60b Machado VG, Stock RI, Reichardt C. Chem. Rev. 2014; 114: 10429
    • 61a Mochida S, Shimizu M, Hirano K, Satoh T, Miura M. Chem. Asian J. 2010; 5: 847
    • 61b Thirunavukkarasu VS, Donati M, Ackermann L. Org. Lett. 2012; 14: 3416
    • 61c Dooley JD, Chidipudi SR, Lam HW. J. Am. Chem. Soc. 2013; 135: 10829
    • 61d Liao G, Song H, Yin X, Shi B. Chem. Commun. 2017; 53: 7824
    • 61e Mei R, Koeller J, Ackermann L. Chem. Commun. 2018; 54: 12879
    • 61f Dutta PK, Ravva MK, Sen S. J. Org. Chem. 2019; 84: 1176
    • 62a Wang J, Qin D, Lan J, Cheng Y, Zhang S, Guo Q, Wu J, Wu D, You J. Chem. Commun. 2015; 51: 6337
    • 62b Li C, Zhu L, Liang W, Su R, Yin J, Hu Y, Lan Y, Wu D, You J. Chem. Sci. 2019; 10: 7274
    • 63a Shankar M, Ghosh K, Mukherjee K, Rit RK, Sahoo AK. Org. Lett. 2018; 20: 5144
    • 63b Guntreddi T, Shankar M, Kommu N, Sahoo AK. J. Org. Chem. 2019; 84: 13033
    • 63c Li J, Liu J, Yin J, Zhang Y, Han W, Lan J, Wu D, Bin Z, You J. J. Org. Chem. 2019; 84: 15697
  • 64 Yin J, Tan M, Wu D, Jiang R, Li C, You J. Angew. Chem. Int. Ed. 2017; 56: 13094
    • 65a Tan X, Liu B, Li X, Li B, Xu S, Song H, Wang B. J. Am. Chem. Soc. 2012; 134: 16163
    • 65b Fu X, Shang Z, Xu X. J. Org. Chem. 2016; 81: 8378
    • 65c Zhou T, Li B, Wang B. Chem. Commun. 2017; 53: 6343
  • 66 Yin J, Zhou F, Zhu L, Yang M, Lan Y, You J. Chem. Sci. 2018; 9: 5488
  • 67 Noguchi T, Nishii Y, Miura M. Synthesis 2019; 51: 258
    • 68a Radadiya A, Shah A. Eur. J. Med. Chem. 2015; 97: 356
    • 68b Shamsuzzaman HK. Eur. J. Med. Chem. 2015; 97: 483
    • 68c Nevagi RJ, Dighe SN, Dighe SN. Eur. J. Med. Chem. 2015; 97: 561
    • 68d Hiremathad A, Patil MR, Chethana KR, Chand K, Santosb MA, Keri RS. RSC Adv. 2015; 5: 96809
    • 68e Blanc A, Bénéteau V, Weibel J, Pale P. Org. Biomol. Chem. 2016; 14: 9184
    • 68f Goyal D, Kaur A, Goyal B. ChemMedChem 2018; 13: 1275
    • 68g Miao Y, Hu Y, Yang J, Liu T, Sun J, Wang X. RSC Adv. 2019; 9: 27510
  • 69 Zhu R, Wei J, Shi Z. Chem. Sci. 2013; 4: 3706
  • 70 Yeh C, Chen W, Gandeepan P, Hong Y, Shih C, Cheng C. Org. Biomol. Chem. 2014; 12: 9105
  • 71 Kuram MR, Bhanuchandra M, Sahoo AK. Angew. Chem. Int. Ed. 2013; 52: 4607
  • 72 Liao J, Guo P, Chen Q. Catal. Commun. 2016; 77: 22
    • 73a Zeng W, Wu W, Jiang H, Huang L, Sun Y, Chen Z, Li X. Chem. Commun. 2013; 49: 6611
    • 73b Fan X, He H, Li J, Luo G, Zheng Y, Zhou J, He J, Pu W, Zhao Y. Bioorg. Med. Chem. 2019; 27: 2235
  • 74 Sreenivasulu C, Reddy AG. K, Satyanarayana G. Org. Chem. Front. 2017; 4: 972
  • 75 Zhang Y, Lam JW. Y, Tang BZ. Polym. Chem. 2016; 7: 330
    • 76a Wang S, Li P, Yu L, Wang L. Org. Lett. 2011; 13: 5968
    • 76b Li C, Zhang Y, Li P, Wang L. J. Org. Chem. 2011; 76: 4692
    • 76c Zhou W, Zhang Y, Li P, Wang L. Org. Biomol. Chem. 2012; 10: 7184
    • 77a Liu G, Shen Y, Zhou Z, Lu X. Angew. Chem. Int. Ed. 2013; 52: 6033
    • 77b Zhou Z, Liu G, Shen Y, Lu X. Org. Chem. Front. 2014; 1: 1161
    • 77c Yang Y, Houk KN, Wu Y. J. Am. Chem. Soc. 2016; 138: 6861
  • 78 Chen W, Liu F, Gong W, Zhou Z, Gao H, Shi J, Wu B, Yi W. Adv. Synth. Catal. 2018; 360: 2470
  • 79 Yi W, Chen W, Liu F, Zhong Y, Wu D, Zhou Z, Gao H. ACS Catal. 2018; 8: 9508
  • 80 Pan J, Liu C, Chen C, Liu T, Wang M, Sun Z, Zhang S. Org. Lett. 2019; 21: 2823
  • 81 Mei Y, Zhou W, Huo T, Zhou F, Xue J, Zhang G, Ren B, Zhong C, Deng Q. Org. Lett. 2019; 21: 9598
  • 82 Naveen T, Deb A, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 1111
  • 83 Ichake SS, Konala A, Kavala V, Kuo C, Yao C. Org. Lett. 2017; 19: 54
  • 84 Zhou Z, Liu G, Chen Y, Lu X. Org. Lett. 2015; 17: 5874
    • 85a Li Y, Shi D, Tang Y, He X, Xu S. J. Org. Chem. 2018; 83: 9464
    • 85b Li Y, Shi D, He X, Wang Y, Tang Y, Zhang J, Xu S. J. Org. Chem. 2019; 84: 1588
  • 86 Li DY, Chen HJ, Liu PN. Angew. Chem. Int. Ed. 2016; 55: 373
  • 87 Guo G, Wan S, Si X, Jiang Q, Jia Y, Yang L, Zhou W. Org. Lett. 2017; 19: 5026
  • 88 Zhao Y, Li S, Zheng X, Tang J, She Z, Gao G, You J. Angew. Chem. Int. Ed. 2017; 56: 4286
  • 89 Zha D, Li H, Li S, Wang L. Adv. Synth. Catal. 2017; 359: 467
  • 90 Lv S, Liu H, Kang J, Luo Y, Gong T, Dong Z, Sun G, He C, Sun X, Wang L. Chem. Commun. 2019; 55: 14729
    • 91a Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
    • 91b Beck JJ, Chou S. J. Nat. Prod. 2007; 70: 891
  • 92 Liu Y, Yang Y, Shi Y, Wang X, Zhang L, Cheng Y, You J. Organometallics 2016; 35: 1350
  • 93 Mei R, Zhang S, Ackermann L. Org. Lett. 2017; 19: 3171
  • 94 Pan J, Xie P, Chen C, Hao Y, Liu C, Bai H, Ding J, Wang L, Xia Y, Zhang S. Org. Lett. 2018; 20: 7131
  • 95 Yuan W, Zhu M, Geng R, Ren G, Zhang L, Wen L, Li M. Org. Lett. 2019; 21: 1654
  • 96 Wang L, Zhang J, Lang M, Wang J. Org. Chem. Front. 2016; 3: 603
  • 97 Borthakur S, Baruah S, Sarma B, Gogoi S. Org. Lett. 2019; 21: 2768
  • 98 Kaishap PP, Duarah G, Sarma B, Chetia D, Gogoi S. Angew. Chem. Int. Ed. 2018; 57: 456
    • 99a Hoberg JO. Tetrahedron 1998; 54: 12631
    • 99b Snyder NL, Haines HM, Peczuh MW. Tetrahedron 2006; 62: 9301
    • 99c Rasolofonjatovo E, Provot O, Hamze A, Rodrigo J, Bignon J, Wdzieczak-Bakala J, Lenoir C, Desravines D, Dubois J, Brion J.-D, Alami M. Eur. J. Med. Chem. 2013; 62: 28
    • 99d O’Boyle NM, Barrett I, Greene LM, Carr M, Fayne D, Twamley B, Knox AJ. S, Keely NO, Zisterer DM, Meegan MJ. J. Med. Chem. 2018; 61: 514
    • 100a Seoane A, Casanova N, Quiñones N, Mascareñas JL, Gulías M. J. Am. Chem. Soc. 2014; 136: 834
    • 100b Gulías M, Marcos-Atanes D, Mascareñas JL, Font M. Org. Process Res. Dev. 2019; 23: 1669
    • 100c Zhang M, Huang G. Chem. Eur. J. 2016; 22: 9356
  • 101 Yi W, Li L, Chen H, Ma K, Zhong Y, Chen W, Gao H, Zhou Z. Org. Lett. 2018; 20: 6812
  • 102 Han X, Liu X, Lin E, Chen Y, Chen Z, Wang H, Li Q. Chem. Commun. 2018; 54: 11562