Synthesis 2020; 52(08): 1181-1202
DOI: 10.1055/s-0039-1690810
short review
© Georg Thieme Verlag Stuttgart · New York

Organocatalyzed [3+3] Annulations for the Construction of Heterocycles

Yannan Zhu
,
You Huang
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemsitry, Nankai University, Tianjin 300071, P. R. of China   eMail: hyou@nankai.edu.cn
› Institutsangaben
This work was financially supported by the National Natural Science Foundation of China (21871148, 21672109 and 21472097).
Weitere Informationen

Publikationsverlauf

Received: 23. November 2019

Accepted after revision: 12. Januar 2020

Publikationsdatum:
05. Februar 2020 (online)


Abstract

Six-membered heterocyclic systems are widely distributed in many natural products and pharmaceuticals, and the construction of highly functionalized six-membered heterocyclic compounds is an important topic in modern organic synthesis. Organocatalyzed [3+3] annulations represents an important method for assembling a substantial variety of six-membered cycles that contain one or more heteroatoms. This review describes the development of organocatalyzed [3+3] annulations for the synthesis of six-membered heterocycles, including organocatalysis using secondary amines, tertiary amines, phosphines, chiral phosphoric acids and N-heterocyclic carbenes.

1 Introduction

2 Secondary Amine Catalyzed [3+3] Annulations

2.1 Synthesis of Nitrogen Heterocycles

2.2 Synthesis of Oxygen Heterocycles

2.3 Synthesis of Sulfur Heterocycles

3 Tertiary Amine Catalyzed [3+3] Annulations

3.1 Catalysis through Multiple Hydrogen-Bonding Interactions

3.2 Catalysis of Tertiary Amines as Lewis Bases

4 Phosphine-Catalyzed [3+3] Annulations

4.1 Synthesis of Nitrogen Heterocycles

4.2 Synthesis of Oxygen Heterocycles

4.3 Synthesis of Heterocycles Containing Two or More Heteroatoms

5 Chiral Phosphoric Acid Catalyzed [3+3] Annulations

5.1 Synthesis of Nitrogen Heterocycles

5.2 Synthesis of Heterocycles Containing Two or More Heteroatoms

6 N-Heterocyclic Carbene Catalyzed [3+3] Annulations

6.1 Synthesis of Nitrogen Heterocycles

6.2 Synthesis of Oxygen Heterocycles

6.3 Synthesis of Heterocycles Containing Two or More Heteroatoms

7 Conclusion and Outlook

 
  • References

  • 1 Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
  • 2 Kobayashi S, Jorgensen KA. Cycloaddition Reactions in Organic Synthesis. Wiley-VCH; New York: 2002
    • 3a MacMillan DW. C. Nature 2008; 455: 304
    • 3b Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
    • 3c Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 3d Guo H, Fan Y, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 4a Harrity JP. A, Provoost O. Org. Biomol. Chem. 2005; 3: 1349
    • 4b Xu X, Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 4c Deng Y, Cheng Q, Doyle MP. Synlett 2017; 28: 1695

      For selected examples, see:
    • 5a Fang X, Li J, Tao H, Wang C. Org. Lett. 2013; 15: 5554
    • 5b Zhang L, Chen J, Liu S, Liang Y, Zhao Y. Adv. Synth. Catal. 2018; 360: 2172
    • 5c Reddy TP, Krishna AV, Ramachary DB. Org. Lett. 2018; 20: 6979
    • 5d Zhu Y, Jin H, Huang Y. Chem. Commun. 2019; 55: 10135
  • 6 Marigo M, Schulte T, Franzen J, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 15710
  • 7 Hayashi Y, Gotoh H, Masui R, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 4012
    • 8a Sklenicka HM, McLaughlin MJ, Wei L, Gerasyuto AI, Brennessel WB. J. Am. Chem. Soc. 2002; 124: 10435
    • 8b Gerasyuto AI, Hsung RP, Sydorenko N, Slafer B. J. Org. Chem. 2005; 70: 4248
    • 8c Goodenough KM, Raubo P, Harrity JP. A. Org. Lett. 2005; 7: 2993
  • 9 Ding X, Su R, Yang W, Deng W. Adv. Synth. Catal. 2018; 360: 4168
  • 10 Zhu M, Wei Q, Gong L. Adv. Synth. Catal. 2008; 350: 1281
  • 11 Wang S, Zhang Y, Dong G, Wu S, Zhu S, Miao Z, Yao J, Li H, Li J, Zhang W, Sheng C, Wang W. Org. Lett. 2013; 15: 5570
  • 12 Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 13 Goudedranche S, Bugaut X, Constantieux T, Bonne D, Rodriguez J. Chem. Eur. J. 2014; 20: 410
  • 14 Zhu Q, Zhang Y, Xu M, Sun X, Yang X, Shi F. J. Org. Chem. 2016; 81: 7898
  • 15 Yue Z, Li W, Liu L, Wang C, Zhang J. Adv. Synth. Catal. 2016; 358: 3015
  • 16 Zhu Y, Wang Z, Zhang J, Yu J, Yan L, Li Y, Chen L, Yan X. Eur. J. Org. Chem. 2018; 3: 347
  • 17 Zheng Y, Cui L, Wang Y, Zhou Z. J. Org. Chem. 2016; 81: 4340
  • 18 Yin S, Zhang S, Zhang J, Sun B, Fan W, Wu B, Wang X. RSC Adv. 2016; 6: 84248
  • 19 Chen X, Zhang J, Zhang S, Kong L, Wang Y, Wang X. Org. Lett. 2015; 17: 42
  • 20 Chen X, Zhang J, Yin S, Li H, Zhou W, Wang X. Org. Lett. 2015; 17: 4188
  • 21 Wu L, Zheng Y, Wang Y, Zhou Z. RSC Adv. 2016; 6: 11602
    • 22a Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 22b Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
    • 22c Xie P, Huang Y. Eur. J. Org. Chem. 2013; 6213
  • 23 Li C, Zhang Q, Tong X. Chem. Commun. 2010; 46: 7828
  • 24 Li K, Hu J, Liu H, Tong X. Chem. Commun. 2012; 48: 2900
  • 25 Ni C, Tong X. J. Am. Chem. Soc. 2016; 138: 7872
  • 26 Zhou W, Ni C, Chen J, Wang D, Tong X. Org. Lett. 2017; 19: 1890
  • 27 Ni C, Zhang Y, Hou Y, Tong X. Chem. Commun. 2017; 53: 2567
    • 28a Ye L, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
    • 28b Fan Y, Kwon O. Chem. Commun. 2013; 49: 11588
    • 28c Wei Y, Shi M. Org. Chem. Front. 2017; 4: 1876
    • 28d Guo H, Fan Y, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 28e Ni H, Chan W, Lu Y. Chem. Rev. 2018; 118: 9344
  • 29 Guo H, Xu Q, Kwon O. J. Am. Chem. Soc. 2009; 131: 6318
  • 30 Jin H, Lai J, Huang Y. Org. Lett. 2019; 21: 2843
  • 31 Li N, Jia P, Huang Y. Chem. Commun. 2019; 55: 10976
  • 32 Hu J, Dong W, Wu X, Tong X. Org. Lett. 2012; 14: 5530
  • 33 Zhang L, Liu H, Qiao G, Hou Z, Liu Y, Xiao Y, Guo H. J. Am. Chem. Soc. 2015; 137: 4316
  • 34 Zhou L, Yuan C, Zhang C, Zhang L, Gao Z, Wang C, Liu H, Wu Y, Guo H. Adv. Synth. Catal. 2017; 359: 2316
  • 35 Liang L, Huang Y. Org. Lett. 2016; 18: 2604
  • 36 Zhu R, Dai W, Wang C, Shi F, Tu S. Chem. Eur. J. 2014; 20: 2597
  • 37 Sun X, Zhang H, Li G, He Y, Shi F. Chem. Eur. J. 2016; 22: 17526
  • 38 Sun X, Li C, He Y, Zhu Z, Mei G, Shi F. Adv. Synth. Catal. 2017; 359: 2660
  • 39 Li C, Lu H, Sun X, Mei G, Shi F. Org. Biomol. Chem. 2017; 15: 4794
  • 40 Kravina AG, Mahatthananchai J, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9433
  • 41 Yetra SR, Bhunia A, Patra A, Mane MV, Vanka K, Biju AT. Adv. Synth. Catal. 2013; 355: 1089
  • 42 Xie D, Yang L, Lin Y, Zhang Z, Chen D, Zeng X, Zhong G. Org. Lett. 2015; 17: 2318
  • 43 Liu Q, Chen X, Li S, Rissanen K, Enders D. Adv. Synth. Catal. 2019; 361: 1991
  • 44 Zhao L, Li X, Cao L, Zhang R, Shi X, Qi J. Chem. Commun. 2017; 53: 5985
  • 45 Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176
  • 46 Sarkar SD, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
  • 47 Zhu Z, Xiao J. Adv. Synth. Catal. 2010; 352: 2455
  • 48 Rong ZQ, Jia MQ, You SL. Org. Lett. 2011; 13: 4080
  • 49 Zhu Z, Zheng X, Jiang N, Wan X, Xiao J. Chem. Commun. 2011; 47: 8670
  • 50 Sun F, Sun L, Ye S. Adv. Synth. Catal. 2011; 353: 3134
  • 51 Yetra SR, Roy T, Bhunia A, Porwal D, Biju AT. J. Org. Chem. 2014; 79: 4245
  • 52 Yetra SR, Mondal S, Suresh E, Biju AT. Org. Lett. 2015; 17: 1417
  • 53 Zhao C, Guo D, Munkerup K, Huang K, Li F, Wang J. Nat. Commun. 2018; 9: 611
  • 54 Sun K, Jin S, Fang S, Ma R, Zhang X, Gao M, Zhang W, Lu T, Du D. Org. Chem. Front. 2019; 6: 2291
  • 55 Chan A, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334
  • 56 Ungureanu A, Levens A, Candish L, Lupton DW. Angew. Chem. Int. Ed. 2015; 54: 11780
  • 57 Xu J, Hu S, Lu Y, Dong Y, Tang W, Lu T, Du D. Adv. Synth. Catal. 2015; 357: 923
  • 58 Xie Y, Wang J. Chem. Commun. 2018; 54: 4597
  • 59 Ghosh A, Barik S, Biju AT. Org. Lett. 2019; 21: 8598