Synthesis 2020; 52(07): 1007-1014
DOI: 10.1055/s-0039-1690806
feature
© Georg Thieme Verlag Stuttgart · New York

Copper/Silver Cocatalyzed Regioselective C5–H Functionalization of 8-Aminoquinoline Amides with 1,3-Dicarbonyl Compounds

Fuxu Zhan
a  School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. of China
,
Wei Zhang
a  School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. of China
,
Huaiqing Zhao
a  School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. of China
b  State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. of China   Email: chm_zhaohq@ujn.edu.cn
› Author Affiliations
Financial support from the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016JL009) and the University of Jinan is greatly appreciated.
Further Information

Publication History

Received: 18 December 2019

Accepted after revision: 12 January 2020

Publication Date:
03 February 2020 (online)


Abstract

A copper/silver co-catalyzed cross-dehydrogenative coupling reaction is developed to achieve exclusively remote C5–H coupling of 8-aminoquinoline amides with the methylenic sp3 C–H bond of 1,3-dicarbonyl compounds. This protocol provides a highly regioselective synthetic route for the functionalization of 8-aminoquinoline amides at C5 under mild conditions. Preliminary experiments reveal that radicals may be involved in this catalytic transformation.

Supporting Information

 
  • References

  • 1 Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
  • 2 Yang Y, Perry IB, Lu G, Liu P, Buchwald SL. Science 2016; 353: 144
  • 3 Fu GC. ACS Cent. Sci. 2017; 3: 692
  • 4 You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
  • 5 Liu Y, Doyle MP. Org. Biomol. Chem. 2012; 10: 6388
    • 6a Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 6b Lei A, Shi W, Liu C, Liu W, Zhang H, He C. Oxidative Cross-Coupling Reactions . Wiley-VCH; Weinheim: 2016
    • 7a Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879
    • 7b Labinger JA, Bercaw JE. Nature 2002; 417: 507
    • 8a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 8b Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 8c Wencel-Delord J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 8d Zhang F, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
    • 8e Zhang YF, Shi ZJ. Acc. Chem. Res. 2019; 52: 161
    • 9a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 9b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 9c Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 9d From C–H to C–C Bonds: Cross-Dehydrogenative-Coupling . Li C.-J. Royal Society of Chemistry; Cambridge: 2015
    • 9e Li C.-J. Chem 2016; 1: 423
    • 9f Varun BV, Dhineshkumar J, Bettadapur KR, Siddaraju Y, Alagiri K, Prabhu KR. Tetrahedron Lett. 2017; 58: 803
    • 9g Huang CY, Kang H, Li J, Li C.-J. J. Org. Chem. 2019; 84: 12705
  • 10 Gong H, Zeng H, Zhou F, Li C.-J. Angew. Chem. Int. Ed. 2015; 54: 5718
  • 11 Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 12a Michael JP. Nat. Prod. Rep. 2005; 22: 627
    • 12b Gaudêncio SP, MacMillan JB, Jensen PR, Fenical W. Planta Med. 2008; 74: 1083
    • 12c Hughes CC, MacMillan JB, Gaudencio SP, Fenical W, La Clair JJ. Angew. Chem. Int. Ed. 2009; 48: 728
    • 12d Madrid PB, Sherrill J, Liou AP, Weisman JL, DeRisib JL, Guy RK. Bioorg. Med. Chem. Lett. 2005; 15: 1015
    • 12e Heidary DK, Howerton BS, Glazer EC. J. Med. Chem. 2014; 57: 8936
    • 12f Singh R, Sran A, Carroll DC, Huang J, Tsvetkov L, Zhou X, Sheung J, McLaughlin J, Issakani SD, Payan DG, Shaw SJ. Bioorg. Med. Chem. Lett. 2015; 25: 5199
    • 12g Hughes G, Bryce MR. J. Mater. Chem. 2005; 15: 94
    • 12h Kimyonok A, Wang XY, Weck M. J. Macromol. Sci., Polym. Rev. 2006; 46: 47
    • 13a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 13b Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 13c Zhou X, Xu H, Yang Q, Chen H, Wang S, Zhao H. Chem. Commun. 2019; 55: 8603
    • 14a Tsai C.-C, Shih W.-C, Fang C.-H, Li C.-Y, Ong T.-G, Yap GP. J. Am. Chem. Soc. 2010; 132: 11887
    • 14b Chen Q, du Jourdin XM, Knochel P. J. Am. Chem. Soc. 2013; 135: 4958
    • 14c Qiao HJ, Sun SY, Zhang Y, Zhu HM, Yu XM, Yang F, Wu YS, Li ZX, Wu YJ. Org. Chem. Front. 2017; 4: 1981
    • 14d Ghosh T, Maity P, Ranu BC. Org. Lett. 2018; 20: 1011
    • 14e Zhu L, Sheng X, Li Y, Lu D, Qiu R, Kambe N. Org. Lett. 2019; 21: 6785
  • 15 Khan B, Dutta HS, Koley D. Asian J. Org. Chem. 2018; 7: 1270
  • 16 Suess AM, Ertem MZ, Cramer CJ, Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
    • 17a Liang HW, Jiang K, Ding W, Yuan Y, Shuai L, Chen YC, Wei Y. Chem. Commun. 2015; 51: 16928
    • 17b Zhao R, Yang Y, Wang X, Ren P, Zhang Q, Li D. RSC Adv. 2018; 8: 37064
    • 17c Sen C, Sahoo T, Singh H, Suresh E, Ghosh SC. J. Org. Chem. 2019; 84: 9869
    • 17d Han SJ, Wu QS, Mele L, Ding LC, Li JY, Zou DP, Wu YS, Wu YJ. Tetrahedron Lett. 2019; 60: 151077
    • 17e See references cited in ref. 15.
  • 18 Qian H, Huang D, Yan G, Lu L. Curr. Org. Chem. 2018; 22: 2055
    • 19a Yang K, Song Q. Org. Lett. 2015; 17: 548
    • 19b Wang C, Li Y, Gong M, Wu Q, Zhang J, Kim JK, Huang M, Wu Y. Org. Lett. 2016; 18: 4151
    • 19c Long H, Wang G, Lu R, Xu M, Zhang K, Qi S, He Y, Bu Y, Liu L. Org. Lett. 2017; 19: 2146
    • 19d Feng G, Sun C, Xin X, Wan R, Liu L. Tetrahedron Lett. 2019; 60: 1547
  • 20 Xu G, Tong C, Cui S, Dai L. Org. Biomol. Chem. 2018; 16: 5899