Synthesis 2020; 52(07): 964-978
DOI: 10.1055/s-0039-1690803
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Applications in the Use of Sulfoxides as Chiral Auxiliaries for the Asymmetric Synthesis of Natural and Biologically Active Products

Xavier Salom-Roig
a  Institut de Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France   Email: Xavier.Salom-Roig@umontpellier.fr
,
Claude Bauder
b  Laboratoire de Synthèse Organométallique et Catalyse (SOCAT), Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France   Email: cbauder@unistra.fr
› Author Affiliations
Further Information

Publication History

Received: 05 November 2019

Accepted after revision: 06 January 2020

Publication Date:
27 January 2020 (online)


Abstract

The contribution of chiral sulfoxides as versatile auxiliaries in the field of organic chemistry has shown a prevalent interest in the asymmetric synthesis of natural products during the last 45 years. In this short review, we report the recent applications of these chiral auxiliaries to the synthesis of natural and biological active products highlighted from 2010 to 2019. We hope to allow the reader to have an overview of the potential of sulfoxide chemistry in the field of enantio­selective synthesis.

1 Introduction

2 Diastereoselective Additions to Ketones

2.1 Reduction of β-Keto Sulfoxides

2.2 Reduction of β-Keto Sulfoxides Followed by Bromohydrin Forma tion

3 Synthesis of an α-Amino α′-Sulfinyl Ketone Followed by Diastere oselective Reduction of the β-Keto Sulfoxide

4 Diastereoselective Addition of Carbanionic Chiral Sulfoxides

4.1 Addition to an Aldehyde

4.1.1 Aldol Reactions

4.1.2 Reformatsky-Type Reactions

4.2 Additions to Chiral Sulfinimines

5 Diastereoselective Cyclization Reactions Directed by a Chiral Sulf oxide

5.1 1,4-Radical Additions

5.2 Intramolecular Conjugate Additions

5.3 Nazarov Cyclizations

5.4 Diels–Alder Reactions

6 Atropodiastereoselective Synthesis

7 Conclusion

 
  • References

  • 1 Kunieda N, Nokami J, Kinoshita M. Chem. Lett. 1974; 369

    • For an overview on applications of enantiopure sulfoxides in asymmetric synthesis, see:
    • 2a Carreño MC. Chem. Rev. 1995; 95: 1717
    • 2b Prilezhaeva EN. Russ. Chem. Rev. 2000; 69: 367
    • 2c Hanquet G, Colobert F, Lanners S, Solladié G. ARKIVOC 2003; (vii): 328
    • 2d Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
    • 2e Pellissier H. Tetrahedron 2006; 62: 5559
    • 2f García Ruano JL, Alemán J, Cid MB, Fernández-Ibañez MA, Maestro MC, Martín MR, Martín-Castro AM. In Organosulfur Chemistry in Asymmetric Synthesis . Toru T, Bolm C. Wiley-VCH; Weinheim: 2008: 55
    • 2g Fernández I, Khiar N. In Organosulfur Chemistry in Asymmetric Synthesis . Toru T, Bolm C. Wiley-VCH; Weinheim: 2008: 265
    • 2h Volonterio A, Zanda M. In Organosulfur Chemistry in Asymmetric Synthesis . Toru T, Bolm C. Wiley-VCH; Weinheim: 2008: 351
    • 2i Balcells D, Maseras F. In Organosulfur Chemistry in Asymmetric Synthesis . Toru T, Bolm C. Wiley-VCH; Weinheim: 2008: 399
    • 2j Ferber B, Kagan HB. Adv. Synth. Catal. 2007; 349: 493
    • 2k Nenajdenko VG, Krasovskiy AL, Balenkova ES. Tetrahedron 2007; 63: 12481
    • 2l Carreño MC, Hernández-Torres G, Ribagorda M, Urbano A. Chem. Commun. 2009; 6129
    • 2m Bauder C, Martinez J, Salom-Roig X.-J. Curr. Org. Synth. 2013; 10: 885
  • 3 See reference 2m and the references cited therein.
  • 4 Bauder C. Eur. J. Org. Chem. 2015; 5402
    • 5a Bauder C. Eur. J. Org. Chem. 2018; 4874
    • 5b Yadav JS, Chetia L. Org. Lett. 2007; 9: 4587
    • 5c Wrona IE, Lowe JT, Turbyville TJ, Johnson TR, Beignet J, Beutler JA, Panek JS. J. Org. Chem. 2009; 74: 1897
    • 6a Mioskowski C, Solladié G. J. Chem. Soc., Chem. Commun. 1977; 162
    • 6b Mioskowski C, Solladié G. Tetrahedron 1980; 36: 227
    • 6c Solladié G, Bauder C, Arce-Dubois E, Pasturel-Jacopé Y. Tetrahedron Lett. 2001; 42: 2923
    • 6d Bauder C. Tetrahedron Lett. 2008; 49: 2243
    • 6e Evans DA, Clark JS, Metternich R, Novack VJ, Sheppard GS. J. Am. Chem. Soc. 1990; 112: 866
    • 6f Evans DA, Ennis MD, Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
    • 6g Crimmins MT, King BW, Tabet EA. J. Am. Chem. Soc. 1997; 119: 7883
    • 6h Oppolzer W, Moretti R, Thomi S. Tetrahedron Lett. 1989; 30: 5603
    • 6i Oppolzer W, Blagg J, Rodriguez I, Walther E. J. Am. Chem. Soc. 1990; 112: 2767
    • 6j Braun M, Devant R. Tetrahedron Lett. 1984; 25: 5031
    • 6k Braun M, Waldmueller D. Synthesis 1989; 856
    • 6l Eichenauer H, Friedrich E, Lutz W, Enders D. Angew. Chem., Int. Ed. Engl. 1978; 17: 206
    • 6m Paterson I, Goodman JM, Isaka M. Tetrahedron Lett. 1989; 30: 7121
    • 6n Roush WR, Palkowitz AD, Palmer MA. J. J. Org. Chem. 1987; 52: 316
    • 6o Brown HC, Bhat KS, Randad RS. J. Org. Chem. 1989; 54: 1570
    • 6p Jain NF, Takenaka N, Panek JS. J. Am. Chem. Soc. 1996; 118: 12475
    • 6q Yamada S, Otani G. Tetrahedron Lett. 1969; 10: 4237
    • 6r List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
  • 7 Rival N, Hazelard D, Hanquet G, Kreuzer T, Bensoussan C, Reymond S, Cossy J, Colobert F. Org. Biomol. Chem. 2012; 10: 9418
  • 8 Chen KM, Hardtmann GE, Prasad K, Repic O, Shapiro MJ. Tetrahedron Lett. 1987; 28: 155
  • 9 Raghavan S, Chiluveru RK. Tetrahedron Lett. 2017; 58: 2465
    • 10a Raghavan S, Sreekanth T. Tetrahedron Lett. 2008; 49: 1169
    • 10b Raghavan S, Rasheed MA, Joseph SC, Rajender A. Chem. Commun. 1999; 1845
  • 11 Raghavan S, Babu VS. Chem. Eur. J. 2011; 17: 8487
    • 12a Raghavan S, Subramanian SG. Tetrahedron 2011; 67: 7529
    • 12b Raghavan S, Chiluveru RK, Subramanian SG. J. Org. Chem. 2016; 81: 4252
  • 13 Géant P.-Y, Martinez J, Salom-Roig XJ. Eur. J. Org. Chem. 2011; 1300
  • 14 Géant P.-Y, Martinez J, Salom-Roig XJ. Eur. J. Org. Chem. 2012; 62
  • 15 Kamo S, Maruo S, Kuramochi K, Tsubaki K. Tetrahedron 2015; 71: 3478
    • 16a Choppin S, Barbarotto M, Obringer M, Colobert F. Synthesis 2016; 48: 3263
    • 16b Obringer M, Barbarotto M, Choppin S, Colobert F. Org. Lett. 2009; 11: 3542
    • 16c Obringer M, Colobert F, Neugnot B, Solladié G. Org. Lett. 2003; 5: 629
    • 16d Fukuzawa S.-I, Matsuzawa H, Yoshimitsu S.-I. J. Org. Chem. 2000; 65: 1702
  • 17 Ferreiro-Mederos L, Vila-Gisbert S, Urbano A, Carreño MC, Colobert F. Org. Biomol. Chem. 2011; 9: 758
  • 18 Raghavan S, Krishnaiah V. J. Org. Chem. 2010; 75: 748
  • 19 Raghavan S, Krishnaiah V, Sridhar B. J. Org. Chem. 2010; 75: 498
  • 20 Mastranzo VM, Yuste F, Ortiz B, Sánchez-Obregón R, Toscano RA, García Ruano JL. J. Org. Chem. 2011; 76: 5036
  • 21 Mastranzo VM, Olivares Romero JL, Yuste F, Ortiz B, Sánchez-Obregón R, García Ruano JL. Tetrahedron 2012; 68: 1266
  • 22 Chung HS, Shin WK, Choi SY, Chung YK, Lee E. Tetrahedron Lett. 2010; 51: 707
  • 23 Kwon MS, Sim SH, Chung YK, Lee E. Tetrahedron 2011; 67: 10179
  • 24 Jang KP, Choi SY, Chung YK, Lee E. Org. Lett. 2011; 13: 2476
    • 25a Fernández de la Pradilla R, Simal C, Bates RH, Viso A, Infantes L. Org. Lett. 2013; 15: 4936
    • 25b Simal C, Bates RH, Ureña M, Giménez I, Koutsou C, Infantes L, Fernández de la Pradilla R, Viso A. J. Org. Chem. 2015; 80: 7674
  • 26 Tang ML, Peng P, Liu ZY, Zhang J, Yu JM, Sun X. Chem. Eur. J. 2016; 22: 14535
  • 27 Grenet E, Martinez J, Salom-Roig XJ. Chem. Eur. J. 2016; 22: 16770
  • 28 Grenet E, Martinez J, Salom-Roig XJ. Asian J. Org. Chem. 2017; 6: 189
  • 29 Lanfranchi DA, Bour C, Hanquet G. Eur. J. Org. Chem. 2011; 2818
  • 30 Yalcouye B, Choppin S, Panossian A, Leroux FR, Colobert F. Eur. J. Org. Chem. 2014; 6285
  • 31 Dherbassy Q, Wencel-Delord J, Colobert F. Tetrahedron 2016; 72: 5238