Synlett 2020; 31(03): 211-222
DOI: 10.1055/s-0039-1690767
account
© Georg Thieme Verlag Stuttgart · New York

Bottom-Up Synthesis of Nitrogen-Doped Polycyclic Aromatic Hydrocarbons

Junzhi Liu
a  Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China   Email: juliu@hku.hk
b  Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany   Email: xinliang.feng@tu-dresden.de
,
b  Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany   Email: xinliang.feng@tu-dresden.de
› Author Affiliations
This work was financially supported by the European Union's Horizon 2020 research and innovation programme (Grant No. 785219), EU Graphene Flagship, Deutsche Forschungsgemeinschaft and National Natural Science Foundation of China (DFG-NSFC Joint Sino-German Research Project, EnhanceNano), Center for Advancing Electronics Dresden (cfaed), European Social Fund and the Federal State of Saxony (ESF-Project ‘GRAPHD’, TU Dresden). J. Liu is grateful for the startup funding from the University of Hong Kong.
Further Information

Publication History

Received: 17 October 2019

Accepted after revision: 25 November 2019

Publication Date:
10 December 2019 (online)


Abstract

Bottom-up organic synthesis serves as an efficient method to provide atomically precise heteroatom-doped polycyclic aromatic hydrocarbons (PAHs) with not only well-defined size and edge structures but also specific concentrations and positions of the heteroatoms. We provide a plenary account of the preparation of nitrogen-doped PAHs (N-PAHs) through 1,3-dipolar cycloaddition between different dipolarophiles, as well as pyrazine-type N-doped diaza-hexa-peri-hexabenzocoronene (diaza-HBC). Additionally, we present the synthesis of a class of helical N-charged PAHs, including one charged aza[5]helicene and two charged aza[4]helicenes. Moreover, the bottom-up organic synthesis strategy is further extended to the construction of novel nitrogen-boron-nitrogen (NBN)-containing PAHs. Finally, we discuss the synthesis of four-coordinate boron chromophores containing 6,12,18-tris(alkyl amine)-5,11,17-triazatrinaphthylene derivative ligands.

1 Introduction

2 Nitrogen-Doped PAHs Based on Dibenzo-9a-azaphenalene (DBAP)

3 Cationic Nitrogen-Doped Helical PAHs

4 Nitrogen–Boron–Nitrogen-Doped PAHs

5 Conclusion and Outlook

 
  • References

  • 1 Wu J, Pisula W, Müllen K. Chem. Rev. 2007; 107: 718
  • 2 Chen L, Hernandez Y, Feng X, Müllen K. Angew. Chem. Int. Ed. 2012; 51: 7640
  • 3 Clar E. Polycyclic Hydrocarbons. Academic Press; London/New York: 1964
  • 4 Clar E. The Aromatic Sextet. Wiley; London: 1972
  • 5 Pisula W, Feng X, Müllen K. Chem. Mater. 2011; 23: 554
  • 6 Avlasevich Y, Li C, Müllen K. J. Mater. Chem. 2010; 20: 3814
  • 7 Feng X, Pisula W, Müllen K. Pure Appl. Chem. 2009; 81: 2203
  • 8 Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
  • 9 Wang X.-Y, Narita A, Müllen K. Nat. Rev. Chem. 2017; 2: 00100
  • 10 Stabel A, Herwig P, Müllen K, Rabe JP. Angew. Chem., Int. Ed. Engl. 1995; 34: 1609
  • 11 Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD. Science 2001; 293: 1119
  • 12 Hill JP, Jin WS, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science 2004; 304: 1481
  • 13 Jäckel F, Watson MD, Müllen K, Rabe JP. Phys. Rev. Lett. 2004; 92: 188303
  • 14 Hendel W, Khan ZH, Schmidt W. Tetrahedron 1986; 42: 1127
  • 15 Wang ZH, Tomovic Z, Kastler M, Pretsch R, Negri F, Enkelmann V, Müllen K. J. Am. Chem. Soc. 2004; 126: 7794
  • 16 Konishi A, Hirao Y, Kurata H, Kubo T. Solid State Commun. 2013; 62
  • 17 Kubo T. Chem. Lett. 2015; 44: 111
  • 18 Kubo T. Chem. Rec. 2015; 15: 18
  • 19 Konishi A, Kubo T. Top Curr. Chem. 2017; 375: 83
  • 20 Sun Z, Zeng Z, Wu J. Acc. Chem. Res. 2014; 47: 2582
  • 21 Zeng Z, Shi X, Chi C, Navarrete JT. L, Casado J, Wu J. Chem. Soc. Rev. 2015; 44: 6578
  • 22 Schwarze M, Tress W, Beyer B, Gao F, Scholz R, Poelking C, Ortstein K, Günther AA, Kasemann D, Andrienko D, Leo K. Science 2016; 352: 1446
  • 23 Wang X, Sun G, Routh P, Kim D.-H, Huang W, Chen P. Chem. Soc. Rev. 2014; 43: 7067
  • 24 Maiti UN, Lee WJ, Lee JM, Oh Y, Kim JY, Kim JE, Shim J, Han TH, Kim SO. Adv. Mater. 2014; 26: 40
  • 25 Liu HT, Liu Y, Zhu D. J. Mater. Chem. 2011; 21: 3335
  • 26 Bunz UH. F, Engelhart JU, Lindner BD, Schaffroth M. Angew. Chem. Int. Ed. 2013; 52: 3810
  • 27 Mateo-Alonso A. Chem. Soc. Rev. 2014; 43: 6311
  • 28 Scholl R. Ber. Dtsch. Chem. Ges. 1907; 40: 1691
  • 29 Stępień M, Gońka E, Żyła M, Sprutta N. Chem. Rev. 2017; 117: 3479
  • 30 Ambrosi A, Chua CK, Bonanni A, Pumera M. Chem. Rev. 2014; 114: 7150
  • 31 Wang X.-Y, Wang J.-Y, Pei J. Chem. Eur. J. 2015; 21: 3528
  • 32 Katritzky AR. Advances in Heterocyclic Chemistry, Vol. 55. Academic Press; New York: 1992: 261-358
  • 33 Wu D, Zhi L, Bodwell GJ, Cui G, Tsao N, Müllen K. Angew. Chem. Int. Ed. 2007; 46: 5417
  • 34 Wu D, Pisula W, Enkelmann V, Feng X, Müllen K. J. Am. Chem. Soc. 2009; 131: 9620
  • 35 Dral PO, Kivala M, Clark T. J. Org. Chem. 2013; 78: 1894
  • 36 Tan Q, Higashibayashi S, Karanjit S, Sakurai H. Nat. Commun. 2012; 3: 891
  • 37 Draper SM, Gregg DJ, Madathil R. J. Am. Chem. Soc. 2002; 124: 3486
  • 38 Ito S, Tokimaru Y, Nozaki K. Angew. Chem. Int. Ed. 2015; 54: 7256
  • 39 Yokoi H, Hiraoka Y, Hiroto S, Sakamaki D, Seki S, Shinokubo H. Nat. Commun. 2015; 6: 8215
  • 40 Park YS, Dibble DJ, Kim J, Lopez RC, Vargas E, Gorodetsky AA. Angew. Chem. Int. Ed. 2016; 55: 3352
  • 41 Bunz UH. F. Acc. Chem. Res. 2015; 48: 1676
  • 42 Ishi-i T, Yaguma K, Kuwahara R, Taguri Y, Mataka S. Org. Lett. 2006; 8: 585
  • 43 Roussel O, Kestemont G, Tant J, Halleux VD, Aspe RG, Levin J, Remacle A, Gearba IR, Ivanov D, Lehmann M, Geerts Y. Mol. Cryst. Liq. Cryst. 2003; 396: 35
  • 44 Sergeyev S, Pisula W, Geerts YH. Chem. Soc. Rev. 2007; 36: 1902
  • 45 Lee WJ, Maiti UN, Lee JM, Lim J, Han TH, Kim SO. Chem. Commun. 2014; 50: 6818
  • 46 Kim J, Lee K, Woo SI, Jung Y. Phys. Chem. Chem. Phys. 2011; 13: 17505
  • 47 Parvez K, Yang S, Hernandez Y, Winter A, Turchanin A, Feng X, Müllen K. ACS Nano 2012; 6: 9541
  • 48 Liang H, Zhuang X, Brüller S, Feng X, Müllen K. Nat. Commun. 2014; 5: 4973
  • 49 Deng Y, Xie Y, Zou K, Ji X. J. Mater. Chem. A 2016; 4: 1144
  • 50 Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
  • 51 Harwood LM, Vickers RJ. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. John Wiley & Sons; New York: 2003: 169-252
  • 52 Domingo LR, Chamorro E, Perez P. Lett. Org. Chem. 2010; 7: 432
  • 53 Kahn SD, Hehre WJ, Pople JA. J. Am. Chem. Soc. 1987; 109: 1871
  • 54 Beugelmans R, Benadjila-Iguertsira L, Roussi G. J. Chem. Soc., Chem. Commun. 1982; 544
  • 55 Padwa A, Dent W, Nimmesgern H, Venkatramanan MK, Wong GS. K. Chem. Ber. 1986; 119: 813
  • 56 Braida B, Walter C, Engels B, Hiberty PC. J. Am. Chem. Soc. 2010; 132: 7631
  • 57 Ess DH, Houk KN. J. Am. Chem. Soc. 2008; 130: 10187
  • 58 Lopez-Calle E, Keller M, Eberbach W. Eur. J. Org. Chem. 2003; 1438
  • 59 Terao Y, Aono M, Achiwa K. Heterocycles 1988; 27: 981
  • 60 Grigg R, Malone JF, Mongkolaussavaratana T, Thianpatanagul S. J. Chem. Soc., Chem. Commun. 1986; 421
  • 61 D’Amico JJ, Stults BR, Ruminski PG, Wood KV. J. Heterocycl. Chem. 1983; 20: 1283
  • 62 Romming C, Kolsaker P. Acta Chem. Scand., Ser. B 1978; 32: 679
  • 63 Takahashi S, Kano H. J. Org. Chem. 1965; 30: 1118
  • 64 Najera C, Sansano JM. Curr. Org. Chem. 2003; 7: 1105
  • 65 Berger R, Giannakopoulos A, Ravat P, Wagner M, Beljonne D, Feng X, Müllen K. Angew. Chem. Int. Ed. 2014; 53: 10520
  • 66 Berger R, Wagner M, Feng X, Müllen K. Chem. Sci. 2015; 6: 436
  • 67 Chintawar CC, Mane MV, Tathe AG, Biswas S, Patil NT. Org. Lett. 2019; 21: 7109
  • 68 Wang X.-Y, Richter M, He Y, Björk J, Riss A, Rajesh R, Garnica M, Hennersdorf F, Weigand JJ, Narita A, Berger R, Feng X, Auwärter W, Barth JV, Palma C.-A, Müllen K. Nat. Commun. 2017; 8: 1948
  • 69 Li Y, Huang K.-W, Sun Z, Webster RD, Zeng Z, Zeng W, Chi C, Furukawa K, Wu J. Chem. Sci. 2014; 5: 1908
  • 70 Li Y, Heng W.-K, Lee BS, Aratani N, Zafra JL, Bao N, Lee R, Sung YM, Sun Z, Huang K.-W, Webster RD, Navarrete JT. L, Kim D, Osuka A, Casado J, Ding J, Wu J. J. Am. Chem. Soc. 2012; 134: 14913
  • 71 Clar E, Fell GS, Richmond MH. Tetrahedron 1960; 9: 96
  • 72 Ito S, Tokimaru Y, Nozaki K. Chem. Commun. 2015; 51: 221
  • 73 Ito S, Tokimaru Y, Nozaki K. Angew. Chem. Int. Ed. 2015; 54: 7256
  • 74 Tokimaru Y, Ito S, Nozaki K. Angew. Chem. Int. Ed. 2017; 56: 15560
  • 75 Tokimaru Y, Ito S, Nozaki K. Angew. Chem. Int. Ed. 2018; 57: 9818
  • 76 Lee WJ, Maiti UN, Lee JM, Lim J, Han TH, Kim SO. Chem. Commun. 2014; 50: 6818
  • 77 Kim J, Lee K, Woo SI, Jung Y. Phys. Chem. Chem. Phys. 2011; 13: 17505
  • 78 Sucunzam D, Cuadro AM, Alvarez-Builla J, Vaquero JJ. J. Org. Chem. 2016; 81: 10126
  • 79 Li F, Cho J, Tan S, Kim S. Org. Lett. 2018; 20: 824
  • 80 Mule RD, Shaikh AC, Gadeab AB, Patil NT. Chem. Commun. 2018; 54: 11909
  • 81 Toriumi N, Asano N, Miyamoto K, Muranaka A, Uchiyama M. J. Am. Chem. Soc. 2018; 140: 3858
  • 82 Yang Y, Liu D, Song M, Shi D, Liu B, Cheng K, Lu Y, Liu H, Yang M, Wang W, Li J, Wei J. Chem. Eur. J. 2017; 23: 7409
  • 83 Asanuma Y, Eguchi H, Nishiyama H, Tomita I, Inagi S. Org. Lett. 2017; 19: 1824
  • 84 Villar JM, Suárez J, Varela JA, Saá C. Org. Lett. 2017; 19: 1702
  • 85 Xiao S, Myers M, Miao Q, Sanaur S, Pang K, Steigerwald ML, Nuckolls C. Angew. Chem. Int. Ed. 2005; 44: 7390
  • 86 Xiao S, Kang SJ, Wu Y, Ahn S, Kim JB, Loo Y, Siegrist T, Steigerwald ML, Li H, Nuckolls C. Chem. Sci. 2013; 4: 2018
  • 87 Liu J, Li B, Tan Y, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X, Müllen K. J. Am. Chem. Soc. 2015; 137: 6097
  • 88 Ma J, Liu J, Baumgarten M, Fu Y, Tan Y, Schellhammer KS, Ortmann F, Cuniberti G, Komber H, Berger R, Müllen K, Feng X. Angew. Chem. Int. Ed. 2017; 56: 3280
  • 89 Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc. Chem. Res. 2015; 48: 267
  • 90 Shen Y, Chen C. Chem. Rev. 2012; 112: 1463
  • 91 Gingras M. Chem. Soc. Rev. 2013; 42: 968
  • 92 Gingras M, Félix G, Peresutti R. Chem. Soc. Rev. 2013; 42: 1007
  • 93 Gingras M. Chem. Soc. Rev. 2013; 42: 1051
  • 94 Kiran V, Mathew SP, Cohen SP, Delgado IH, Lacour J, Naaman R. Adv. Mater. 2016; 28: 1957
  • 95 Naaman R, Waldeck DH. Annu. Rev. Phys. Chem. 2015; 66: 263
  • 96 Deng J.-R, Chan W.-C, Lai NC.-H, Yang B, Tsang C.-S, Ko BC.-B, Chan SL.-F, Wong M.-K. Chem. Sci. 2017; 8: 7537
  • 97 Xu K, Fu Y, Zhou Y, Hennersdorf F, Machata P, Vincon I, Weigand JJ, Popov AA, Berger R, Feng X. Angew. Chem. Int. Ed. 2017; 56: 15876
  • 98 Zhang G, Yang L, Wang Y, Xie Y, Huang H. J. Am. Chem. Soc. 2013; 135: 8850
  • 99 Davies DL, Ellul CE, Macgregor SA, McMullin CL, Singh K. J. Am. Chem. Soc. 2015; 137: 30, 9659
  • 100 Fukazawa A, Yamada H, Yamaguchi S. Angew. Chem. Int. Ed. 2008; 47: 5582
  • 101 Payne MM, Odom SA, Parkin SR, Anthony JE. Org. Lett. 2004; 6: 3325
  • 102 Niimi K, Shinamura S, Osaka I, Miyazaki E, Takimiya K. J. Am. Chem. Soc. 2011; 133: 8732
  • 103 Mori T, Nishimura T, Yamamoto T, Doi I, Miyazaki E, Osaka I, Takimiya K. J. Am. Chem. Soc. 2013; 135: 13900
  • 104 Bosdet MJ. D, Jaska CA, Piers WE, Sorensen TS, Parvez M. Org. Lett. 2007; 9: 1395
  • 105 Liu Z, Marder TB. Angew. Chem. Int. Ed. 2008; 47: 242
  • 106 Bosdet MJ. D, Piers WE. Can. J. Chem. 2009; 87: 8
  • 107 Campbell PG, Marwitz AJ. V, Liu S.-Y. Angew. Chem. Int. Ed. 2012; 51: 6074
  • 108 Hashimoto S, Ikuta T, Shiren K, Nakatsuka S, Ni J, Nakamura M, Hatakeyama T. Chem. Mater. 2014; 26: 6265
  • 109 Wang X.-Y, Lin HR, Lei T, Yang DC, Zhuang FD, Wang JY, Yuan SC, Pei J. Angew. Chem. Int. Ed. 2013; 52: 3117
  • 110 Wang X.-Y, Zhuang FD, Wang RB, Wang XC, Cao XY, Wang JY, Pei J. J. Am. Chem. Soc. 2014; 136: 3764
  • 111 Wang X.-Y, Wang JY, Pei J. Chem. Eur. J. 2015; 21: 3528
  • 112 Wang X.-Y, Narita A, Feng X, Müllen K. J. Am. Chem. Soc. 2015; 137: 7668
  • 113 Wang X, Zhang F, Liu J, Tang R, Fu Y, Wu D, Xu Q, Zhuang X, He G, Feng X. Org. Lett. 2013; 15: 5714
  • 114 Zhang W, Zhang F, Tang R, Fu Y, Wang X, Zhuang X, He G, Feng X. Org. Lett. 2016; 18: 3618
  • 115 Chissick SS, Dewar MJ. S, Maitlis PM. Tetrahedron Lett. 1960; 1: 8
  • 116 Hatakeyama T, Hashimoto S, Seki S, Nakamura M. J. Am. Chem. Soc. 2011; 133: 18614
  • 117 Wang X, Zhang F, Gao J, Fu Y, Zhao W, Tang R, Zhang W, Zhuang X, Feng X. J. Org. Chem. 2015; 80: 10127
  • 118 Wang X, Zhang F, Schellhammer KS, Machata P, Ortmann F, Cuniberti G, Fu Y, Hunger J, Tang R, Popov AA, Berger R, Müllen K, Feng X. J. Am. Chem. Soc. 2016; 138: 11606
  • 119 Riehm T, Paoli GD, Wadepohl H, Cola LD, Gade LH. Chem. Commun. 2008; 42: 5348
  • 120 Nishida J.-I, Fujita T, Fujisaki Y, Tokito S, Yamashita Y. J. Mater. Chem. 2011; 21: 16442
  • 121 Abbey ER, Liu S.-Y. Org. Biomol. Chem. 2013; 11: 2060
  • 122 Lorenz T, Lik A, Plamper FA, Helten H. Angew. Chem. Int. Ed. 2016; 55: 7236
  • 123 Numano M, Nagami N, Nakatsuka S, Katayama T, Nakajima K, Tatsumi S, Yasuda N, Hatakeyama T. Chem. Eur. J. 2016; 22: 11574
  • 124 Noda H, Furutachi M, Asada Y, Shibasaki M, Kumagai N. Nat. Chem. 2017; 9: 571
  • 125 Fingerle M, Maichle-Mössmer C, Schundelmeier S, Speiser B, Bettinger HF. Org. Lett. 2017; 19: 4428
  • 126 Fu Y, Zhang K, Dmitrieva E, Liu F, Ma J, Weigand JJ, Popov AA, Berger R, Pisula W, Liu J, Feng X. Org. Lett. 2019; 21: 1354
  • 127 Li D, Zhang H, Wang Y. Chem. Soc. Rev. 2013; 42: 8416
  • 128 Galer P, Korošec RC, Vidmar M, Šket B. J. Am. Chem. Soc. 2014; 136: 7383
  • 129 Fu Y, Qiu F, Zhang F, Mai Y, Wang Y, Fu S, Tang R, Zhuang X, Feng X. Chem. Commun. 2015; 51: 5298
  • 130 Sun L, Zhang F, Wang X, Qiu F, Xue M, Tregnago G, Cacialli F, Osella S, Beljonne D, Feng X. Chem. Asian J. 2015; 10: 709
  • 131 Cheng X, Li D, Zhang Z, Zhang H, Wang Y. Org. Lett. 2014; 16: 880
  • 132 Wakamiya A, Taniguchi T, Yamaguchi S. Angew. Chem. Int. Ed. 2006; 45: 3170
  • 133 Liu QD, Mudadu MS, Thummel R, Tao Y, Wang S. Adv. Funct. Mater. 2005; 15: 143
  • 134 Tamgho I.-S, Hasheminasab A, Engle JT, Nemykin VN, Ziegler CJ. J. Am. Chem. Soc. 2014; 136: 5623
  • 135 Zhang H, Hong X, Ba X, Yu B, Wen X, Wang S, Wang X, Liu L, Xiao J. Asian J. Org. Chem. 2014; 3: 1168
  • 136 Curiel D, Más-Montoya M, Usea L, Espinosa A, Orenes RA, Molina P. Org. Lett. 2012; 14: 3360
  • 137 Qiu F, Zhang F, Tang R, Fu Y, Wang X, Han S, Zhuang X, Feng X. Org. Lett. 2016; 18: 1398
  • 138 Squillaci M, Qiu F, Zhang F, Feng X, Samori P. Adv. Mater. 2016; 28: 5249
  • 139 Stępień M, Gońka E, Żyła M, Sprutta N. Chem. Rev. 2017; 117: 3479
  • 140 Takase M, Narita T, Fujita W, Asano MS, Nishinaga T, Benten H, Yoza K, Müllen K. J. Am. Chem. Soc. 2013; 135: 8031
  • 141 Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M.-J, Schaub R, Bettinger HF. Angew. Chem. Int. Ed. 2015; 54: 8284
  • 142 Lorenz T, Lik A, Plamper FA, Helten H. Angew. Chem. Int. Ed. 2016; 55: 7236
  • 143 Hatakeyama T, Hashimoto S, Seki S, Nakamura M. J. Am. Chem. Soc. 2011; 133: 18614
  • 144 Cai J, Pignedoli CA, Talirz L, Ruffieux P, Söde H, Liang L, Meunier V, Berger R, Li R, Feng X, Müllen K, Fasel R. Nat. Nanotechnol. 2014; 9: 896
  • 145 Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K, Gao H.-J. Appl. Phys. Lett. 2014; 105: 023101