Synthesis 2020; 52(06): 917-927
DOI: 10.1055/s-0039-1690759
paper
© Georg Thieme Verlag Stuttgart · New York

Site-Specific Synthesis of Carbazole Derivatives through Aryl Homocoupling and Amination

Jaeyoung Ban
a   Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea
,
Minkyung Lim
a   Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea
,
Saira Shabbir
b   Department of Chemistry, University of Education, Inner link 3, Dera Ghazi Khan, 32200, Pakistan
,
Junghyun Baek
a   Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea
,
Hakjune Rhee
a   Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea
c   Department of Chemical and Molecular Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea   Email: hrhee@hanyang.ac.kr
› Author Affiliations
This research was supported by the Basic Science Research Program administered through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2018R1D1A1A09082498) and by the Korean Ministry of Education through the BK21-Plus Project of the Hanyang University Graduate Program.
Further Information

Publication History

Received: 15 October 2019

Accepted after revision: 13 November 2019

Publication Date:
26 November 2019 (online)


These authors contributed equally.

Abstract

We synthesized various carbazoles from anilines through a three-step process with good overall yields (up to 48%). This process comprises N-acetylation, copper(0)-mediated Ullmann homocoupling, and acid-mediated intramolecular amination. It permits various functional­ groups on the substrate. Scale-up of the developed three-step synthetic route to carbazoles was also demonstrated.

Supporting Information

 
  • References

  • 1 Bashir M, Bano A, Ijaz AS, Chaudhary BA. Molecules 2015; 20: 13496
  • 2 Schmidt AW, Reddy KR, Knolker HJ. Chem. Rev. 2012; 112: 3193
  • 3 Knölker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
  • 4 Mounika KN, Jyothi AN, Raju GN, Rao R. World J. Pharm. Sci. 2015; 4: 420
  • 5 Utaipan T, Athipornchai A, Suksamrarn A, Jirachotikoon C, Yuan X, Lertcanawanichakul M, Chunglok W. J. Nat. Med. 2017; 71: 158
  • 6 Faust D, Nikolova T, Wätjen W, Kaina B, Dietrich C. Arch. Toxicol. 2017; 91: 967
  • 7 Sun L, Wu Y, Liu Y, Chen X, Hu L. Bioorg. Med. Chem. Lett. 2017; 27: 261
  • 8 Wang W, Li Q, Wei Y, Xue J, Sun X, Yu Y, Chen Z, Li S, Duan L. Int. J. Parasitol.: Drugs Drug Resist. 2017; 7: 191
  • 9 Brütting C, Kataeva O, Schmidt AW, Knölker H.-J. Eur. J. Org. Chem. 2017; 2017: 3288
  • 10 Karon K, Lapkowski M. J. Solid State Electrochem. 2015; 19: 2601
  • 11 Sathiyan G, Sivakumar EK. T, Ganesamoorthy R, Thangamuthu R, Sakthivel P. Tetrahedron Lett. 2016; 57: 243
  • 12 Daskeviciene M, Paek S, Wang Z, Malinauskas T, Jokubauskaite G, Rakstys K, Cho KT, Magomedov A, Jankauskas V, Ahmad S, Snaith HJ, Getautis V, Nazeeruddin MK. Nano Energy 2017; 32: 551
  • 13 Mousawi AA, Dumur F, Garra P, Toufaily J, Hamieh T, Graff B, Gigmes D, Fouassier JP, Lalevée J. Macromolecules 2017; 50: 2747
  • 14 Manfredi N, Monai M, Montini T, Salamone M, Ruffo R, Fornasiero P, Abbotto A. Energy Fuels 2017; 1: 694
  • 15 Upadhyay A, Karpagam S. Dyes Pigm. 2017; 139: 50
  • 16 Chua MH, Zhou H, Lin TT, Wu J, Xu JW. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 672
  • 17 Tomkeviciene A, Sutaite J, Volyniuk D, Kostiv N, Simkus G, Mimaite V, Grazulevicius JV. Dyes Pigm. 2017; 140: 363
  • 18 Park S.-R, Kim S.-M, Kang J.-H, Lee J.-H, Suh MC. Dyes Pigm. 2017; 141: 217
  • 19 Keruckiene R, Volyniuk D, Ostrauskaite J, Peciulyte L, Grazulevicius JV, Kostjuk SV, Lazauskas A. Dyes Pigm. 2017; 137: 58
  • 20 Li N, Fan Z, Fang Y, Li L, Quan Y, Chen Q, Ye S, Fan Q, Huang W. J. Phys. Chem. C 2017; 121: 8692
  • 21 Dong Q, Lian H, Gao Z, Guo Z, Xiang N, Zhong Z, Guo H, Huang J, Wong W.-Y. Dyes Pigm. 2017; 137: 84
  • 22 Roy J, Jana AK, Mal D. Tetrahedron 2012; 68: 6099
  • 23 Yoshikai N, Wei Y. Asian J. Org. Chem. 2013; 2: 466
  • 24 Jiang Q, Duan-Mu D, Zhong W, Chen H, Yan H. Chem. Eur. J. 2013; 19: 1903
  • 25 Monguchi Y, Okami H, Ichikawa T, Nozaki K, Maejima T, Oumi Y, Sawama Y, Sajiki H. Adv. Synth. Catal. 2016; 358: 3145
  • 26 Yang L, Li H, Zhang H, Lu H. Eur. J. Org. Chem. 2016; 2016: 5611
  • 27 Bjørsvik H.-R, Elumalai V. Eur. J. Org. Chem. 2016; 2016: 5474
  • 28 Takamatsu K, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 2892
  • 29 Sahoo B, Surkus AE, Pohl MM, Radnik J, Schneider M, Bachmann S, Scalone M, Junge K, Beller M. Angew. Chem. Int. Ed. 2017; 56: 11242
  • 30 Chen L, Yang T, Cui H, Cai T, Zhang L, Su C.-Y. J. Mater. Chem. A 2015; 3: 20201
  • 31 Jawale DV, Gravel E, Shah N, Dauvois V, Li H, Namboothiri IN, Doris E. Chemistry 2015; 21: 7039
  • 32 Naykode MS, Humne VT, Lokhande PD. J. Org. Chem. 2015; 80: 2392
  • 33 Humne V, Dangat Y, Vanka K, Lokhande P. Org. Biomol. Chem. 2014; 12: 4832
  • 34 Yamato T, Hideshima C, Suehiro K, Tashiro M, Prakash GK. S, Olah GA. J. Org. Chem. 1991; 56: 6248
  • 35 Lim B.-Y, Choi M.-K, Cho C.-G. Tetrahedron Lett. 2011; 52: 6015
  • 36 Chen S, Jiang P, Wang P, Pei Y, Huang H, Xiao F, Deng GJ. J. Org. Chem. 2019; 84: 3121
  • 37 Yang L, Zhang Y, Zou X, Lu H, Li G. Green Chem. 2018; 20: 1362
  • 38 Chatterjee T, Roh GB, Shoaib MA, Suhl CH, Kim JS, Cho CG, Cho EJ. Org. Lett. 2017; 19: 1906
  • 39 Leditschke H. Chem. Ber. 1953; 86: 522
  • 40 Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
  • 41 Ullmann F. Justus Liebigs Ann. Chem. 1904; 332: 38
  • 42 Fanta PE. Chem. Rev. 1946; 38: 139
  • 43 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 44 Campeau L.-C, Hazari N. Organometallics 2018; 38: 3
  • 45 Nelson TD, Crouch RD. Org. React. (N. Y.) 2004; 63: 265, DOI: org/10.1002/0471264180.or063.03
  • 46 Yasamut K, Jongcharoenkamol J, Ruchirawat S, Ploypradith P. Tetrahedron 2016; 72: 5994
  • 47 Veisi H, Hamelian M, Hemmati S, Dalvand A. Tetrahedron Lett. 2017; 58: 4440
  • 48 Zhang S, Zhang D, Liebeskind LS. J. Org. Chem. 1997; 62: 2312
  • 49 Herbert MR, Siegel DL, Staszewski L, Cayanan C, Banerjee U, Dhamija S, Anderson J, Fan A, Wang L, Rix P, Shiau AK, Rao TS, Noble SA, Heyman RA, Bischoff E, Guha M, Kabakibi A, Pinkerton AB. Bioorg. Med. Chem. Lett. 2010; 20: 5718
  • 50 Tsikolia M, Bernier UR, Wedge DE, Tabanca N, Abboud KA, Linthicum KJ. Chemistry & Biodiversity 2019; 16: e1800618
  • 51 Serguchev YA, Davydova VG, Makhon’kov DI, Cheprakov AV, Beletskaya IP. Zh. Org. Khim. 1985; 21: 2010
  • 52 Danqian X, Zhenyuan X, Jinghua C, Luzhou B, Jinglong H. Nongyao 2001; 40: 9
  • 53 Bedford RB, Haddow MF, Mitchell CJ, Webster RL. Angew. Chem. Int. Ed. 2011; 50: 5524
  • 54 Zheng N, Anderson KW, Huang X, Nguyen HN, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 7509
  • 55 Singh H, Sen C, Sahoo T, Ghosh SC. Eur. J. Org. Chem. 2018; 2018: 4748
  • 56 Austin M, Egan OJ, Tully R, Pratt AC. Org. Biomol. Chem. 2007; 5: 3778
  • 57 Sadowski B, Stewart DJ, Phillips AT, Grusenmeyer TA, Haley JE, Cooper TM, Gryko DT. J. Org. Chem. 2019; in press; DOI: 10.1021/acs.joc.9b00839
  • 58 Simonsen JL, Rau MG. J. Chem. Soc. Trans. 1918; 113: 782
  • 59 Chen C, Liu W, Liu B, Zhou P, Tan H. Asian J. Org. Chem. 2019; 8: 470
  • 60 Tsang WC, Zheng N, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
  • 61 Nakagawa Y, Izumi K, Oikawa N, Sotomatsu T, Shigemura M, Fujita T. Environ. Toxicol. Chem. 1992; 11: 901
  • 62 Mei C, Lu W. J. Org. Chem. 2018; 83: 4812
  • 63 Scarborough CC, McDonald RI, Hartmann C, Sazama GT, Bergant A, Stahl SS. J. Org. Chem. 2009; 74: 2613
  • 64 Jiang TS, Wang GW. J. Org. Chem. 2012; 77: 9504
  • 65 Bering L, Vogt M, Paulussen FM, Antonchick AP. Org. Lett. 2018; 20: 4077
  • 66 Ross SD, Kuntz I. J. Am. Chem. Soc. 1952; 74: 1297
  • 67 Asahara KK, Okita T, Saito AN, Muto K, Nakao Y, Yamaguchi J. Org. Lett. 2019; 21: 4721
  • 68 Rasheed S, Rao DN, Das P. Asian J. Org. Chem. 2016; 5: 1499
  • 69 Dalvi BA, Lokhande PD. Tetrahedron Lett. 2018; 59: 2145
  • 70 Lee DS, Chatterjee T, Ban J, Rhee H, Cho EJ. ChemistrySelect 2018; 3: 2092
  • 71 Vaillant FL, Garreau M, Nicolai S, Gryn’ova G, Corminboeuf C, Waser J. Chem. Sci. 2018; 9: 5883
  • 72 Bak KM, Chabuda K, Montes H, Quesada R, Chmielewski MJ. Org. Biomol. Chem. 2018; 16: 5188
  • 73 Choi DS, Choi JS. KR 2019035043, 2019
  • 74 Babu J, Ganesan S, Kumar KA, Karuppusamy M, Pandurangan A, Rajakumar P. New J. Chem. 2019; 43: 4036
  • 75 Polley A, Varalaxmi K, Jana R. ACS Omega 2018; 3: 14503