Synthesis 2020; 52(05): 727-734
DOI: 10.1055/s-0039-1690757
paper
© Georg Thieme Verlag Stuttgart · New York

An Iodide-Mediated Transition-Metal-Free Strategy towards Unsymmetrical Diaryl Sulfides via Arylhydrazines and Thiols

Farnaz Jafarpour
,
Mohammad Asadpour
,
Meysam Azizzade
,
Mehran Ghasemi
,
Saideh Rajai-Daryasarei
We acknowledge financial support from the University of Tehran.
Further Information

Publication History

Received: 03 October 2019

Accepted after revision: 11 November 2019

Publication Date:
25 November 2019 (online)


Abstract

A mild, scalable iodine-mediated oxidative cross-coupling reaction of arylhydrazines and thiols for construction of thioethers (sulfides) in the absence of any transition metals or photocatalysts is disclosed. A variety of unsymmetrical diaryl sulfides with broad substrate scope both on thiols and hydrazines were synthesized in high yields in water at room temperature. Furthermore, to demonstrate the utility of the protocol, the above C–S bond formation was applied in the synthesis of the key structure of vortioxetine as an antidepressant drug. The gram-scale outcome also added to the potential utility of this protocol.

Supporting Information

 
  • References

    • 1a Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN. Chem. Mater. 2014; 26: 724
    • 1b Worthington MJ. H, Kucera RL, Chalker JM. Green Chem. 2017; 19: 2748
    • 1c Bhargav A, Ma Y, Shashikala K, Cui Y, Losovyj Y, Fu Y. J. Mater. Chem. A 2017; 5: 25005
    • 2a Nicolaou KC, Hale CR. H, Nilewski C, Ioannidou HA. Chem. Soc. Rev. 2012; 41: 5185
    • 2b Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
    • 3a Reck F, Zhou F, Girardot M, Kern G, Eyermann CJ, Hales NJ, Ramsay RR, Gravestock MB. J. Med. Chem. 2005; 48: 499
    • 3b Parveen S, Khan MO. F, Austin SE, Croft SL, Yardley V, Rock P, Douglas KT. J. Med. Chem. 2005; 48: 8087
    • 3c Huang S.-T, Hsei I.-J, Chen C. Bioorg. Med. Chem. 2006; 14: 6106
  • 4 Lamberth C, Walter H, Kessabi FM, Quaranta L, Beaudegnies R, Trah S, Jeanguenta A, Cederbaum F. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 1225
    • 5a Vaidya V, Ingold KU, Pratt DA. Angew. Chem. Int. Ed. 2009; 48: 157
    • 5b Aoyagi M, Kamoi T, Kato M, Sasako H, Tsuge N, Imai S. J. Agric. Food Chem. 2011; 59: 10893
    • 6a Sun ZY, Botros E, Su AD, Kim Y, Wang EJ, Baturay NZ, Kwon CH. J. Med. Chem. 2000; 43: 4160
    • 6b Nielsen SF, Nielsen E. Ø, Olsen GM, Liljefors T, Peters D. J. Med. Chem. 2000; 43: 2217
    • 6c Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 6d De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2004; 47: 6120
    • 6e Gangjee A, Zeng YB, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
    • 6f Le Grand BL, Pignier C, Cuisiat R, Rolland F, Mas A, Vacher B. J. Med. Chem. 2008; 51: 3856
    • 6g Pasquini S, Mugnaini C, Tintori C, Botta M, Trejos A, Arvela RK, Larhed M, Witvrouw M, Michiels M, Christ F, Debyser Z, Corelli F. J. Med. Chem. 2008; 51: 5125
    • 6h Wu H, Bock S, Snitko M, Berger T, Weidner T, Holloway S, Kanitz M, Diederich WE, Steuber H, Walter C, Hofmann D, Weißbrich B, Spannaus R, Acosta EG, Bartenschlager R, Engels B, Schirmeister T, Bodemb J. Antimicrob. Agents Chemother. 2015; 59: 1100
    • 6i Mao Y, Jiang L, Chen T, He H, Liu G, Wang H. Synthesis 2015; 47: 1387
    • 6j Sanchez C, Asin KE, Artigas F. Pharmacol. Ther. 2015; 145: 43
  • 7 Roy K.-M. Sulfones and Sulfoxides . In Ullmann’s Encyclopedia of Industrial Chemistry [Online]. Wiley-VCH, Posted June 15, 2000. DOI; DOI: org/10.1002/14356007.a25_487

    • For reviews on metal-catalysed C–S bond formation, see:
    • 8a Beletskaya IP, Ananikov VP. Eur. J. Org. Chem. 2007; 3431
    • 8b Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 8c Eichman CC, Stambuli JP. Molecules 2011; 16: 590
    • 8d Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 8e Shen C, Zhang P, Sun Q, Bai S, Hor TS. A, Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 8f Stambuli JP. In New Trends in Cross-Coupling . Colacot TJ. RSC Publishing; Cambridge: 2015: 254
  • 9 Terrier F. Modern Nucleophilic Aromatic Substitution . Wiley-VCH; Weinheim: 2002. Chap. 4, 205

    • For selected examples on Pd-catalyzed reactions see:
    • 10a Kosugi M, Shimizu T, Migita T. Chem. Lett. 1978; 13
    • 10b Migita T, Shimizu T, Asami Y, Shiobara J.-I, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
    • 10c Mann G, Baranano D, Hartwig JF, Rheingold AL, Guzei IA. J. Am. Chem. Soc. 1998; 120: 9205
    • 10d Li GY. Angew. Chem. Int. Ed. 2001; 40: 1513
    • 10e Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
    • 10f Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 10g Fernandez-Rodriguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 10h Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 10i Alvaro E, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 7858
    • 10j Sayah M, Organ MG. Chem. Eur. J. 2013; 19: 16196

    • For selected examples on Ni-catalyzed reactions see:
    • 10k Cristau HJ, Chabaud B, Christol CH. Synthesis 1981; 892
    • 10l Foà M, Santi R, Garavaglia F. J. Organomet. Chem. 1981; 206: C29
    • 10m Zhang Y, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
    • 10n Xu X.-B, Liu J, Zhang J.-J, Wang Y.-W, Peng Y. Org. Lett. 2013; 15: 550
    • 10o Martin AR, Nelson DJ, Meiries S, Slawin AM. Z, Nolan SP. Eur. J. Org. Chem. 2014; 3127
    • 10p Wellala NP. N, Guan H. Org. Biomol. Chem. 2015; 13: 10802
    • 10q Jouffroy M, Kelly CB, Molander GA. Org. Lett. 2016; 18: 876
    • 10r Liu X, Cao Q, Xu W, Zeng M.-T, Dong Z.-B. Eur. J. Org. Chem. 2017; 5795
    • 10s Guo F.-J, Sun J, Xu Z.-Q, Kühn FE, Zang S.-L, Zhou M.-D. Catal. Commun. 2017; 96: 11
    • 10t Jones KD, Power DJ, Bierer D, Gericke KM, Stewart SG. Org. Lett. 2018; 20: 208

    • For examples on metal-catalyzed reactions see:
    • 10u Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613
    • 10v Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189
    • 10w Chen C.-K, Chen Y.-W, Lin C.-H, Lin H.-P, Lee C.-F. Chem. Commun. 2010; 46: 282
    • 10x Liu T.-J, Yi C.-L, Chan C.-C, Lee C.-F. Chem. Asian J. 2013; 8: 1029
    • 10y Wang D, Yu X, Yao W, Hu W, Ge C, Shi X. Chem. Eur. J. 2016; 22: 5543
    • 10z Jiang M, Li H, Yang H, Fu H. Angew. Chem. Int. Ed. 2017; 56: 874
    • 11a Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J.-X, Wu L.-Z, Lei A. J. Am. Chem. Soc. 2015; 137: 9273
    • 11b Oderinde MS, Frenette M, Robbins DW, Aquila B, Johannes JW. J. Am. Chem. Soc. 2016; 138: 1760
    • 11c Johnson MW, Hannoun KI, Tan Y, Fu GC. Chem. Sci. 2016; 7: 4091
    • 11d Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
    • 11e Vara BA, Li X, Berritt S, Walters CR, Petersson EJ, Molander GA. Chem. Sci. 2018; 9: 336
  • 12 Sikari R, Sinha S, Das S, Saha A, Ghakraborty G, Mondal R, Paul ND. J. Org. Chem. 2019; 84: 4072
  • 13 Liu D, Ma H.-X, Fang P, Mei T.-S. Angew. Chem. Int. Ed. 2019; 58: 5033
    • 14a Duan Z, Ranjit S, Zhang P, Liu X. Chem. Eur. J. 2009; 15: 3666
    • 14b Becht JM, Le Drian C. J. Org. Chem. 2011; 76: 6327
    • 14c Yu L, Huang X. Synlett 2007; 1371
    • 15a Liu J.-B, Zhou H.-P, Peng Y.-Y. Tetrahedron Lett. 2014; 55: 2872
    • 15b Liu J.-B, Chen F.-J, Liu N, Hu J. RSC Adv. 2015; 5: 45843
    • 15c Ravi M, Chauhan P, Kant R, Shukla SK, Yadav PP. J. Org. Chem. 2015; 80: 5369
    • 15d Chauhan P, Ravi M, Singh S, Prajapati P, Yadav PP. RSC Adv. 2016; 6: 109
    • 15e Liu J, Yuan S, Song X, Qiu G. Chin. J. Org. Chem. 2016; 36: 1790
    • 15f Taniguchi T, Naka T, Imoto M, Takeda M, Nakai T, Mihara M, Mizuno T, Nomoto A, Ogawa A. J. Org. Chem. 2017; 82: 6647
    • 15g Jana S, Samanta S, Bagdi AK, Shirinian VZ, Hajra A. RSC Adv. 2018; 8: 12360
    • 15h Hosseinian A, Mohammadi R, Ahmadi S, Monfared A, Rahmani Z. RSC Adv. 2018; 8: 33828
  • 16 Wang C, Zhang Z, Tu Y, Li Y, Wu J, Zhao J. J. Org. Chem. 2018; 83: 2389
  • 17 Kibriya G, Mondal S, Hajra A. Org. Lett. 2018; 20: 7740
    • 18a Khoobi M, Molaverdi F, Alipour M, Jafarpour F, Foroumadi A, Shafiee A. Tetrahedron 2013; 69: 11164
    • 18b Jafarpour F, Zarei S, Olia MB. A, Jalalimanesh N, Rahiminejadan S. J. Org. Chem. 2013; 78: 2957
    • 18c Jafarpour F, Abbasnia M. J. Org. Chem. 2016; 81: 11982
    • 18d Golshani M, Khoobi M, Jalalimanesh N, Jafarpour F, Ariafard A. Chem. Commun. 2017; 53: 10676
    • 18e Jafarpour F, Darvishmolla M. Org. Biomol. Chem. 2018; 16: 3396
    • 19a Wu X.-F, Gong JL, Qi X. Org. Biomol. Chem. 2014; 12: 5807
    • 19b Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
  • 20 Köhler S, Cierpinsky K, Kronenberg G, Adli M. J. Psychopharmacol. 2016; 30: 13
    • 21a Li X, Xu X, Zhou C. Chem. Commun. 2012; 48: 12240
    • 21b Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 21c Li X, Shi X, Fang M, Xu X. J. Org. Chem. 2013; 78: 9499
    • 21d Zhang J, Shao Y, Wang H, Luo Q, Chen J, Xu D, Wan X. Org. Lett. 2014; 16: 3312
    • 21e Kumaraswamy G, Raju R. Adv. Synth. Catal. 2014; 356: 2591
    • 21f Tang S, Wu Y, Liao W, Bai R, Liu C, Lei A. Chem. Commun. 2014; 50: 4496
    • 21g Guo S.-R, He W.-M, Xiang J.-N, Yuan Y.-Q. Chem. Commun. 2014; 50: 8578
    • 21h Li S, Li X, Yang F, Wu Y. Org. Chem. Front. 2015; 2: 1076
    • 21i Singh R, Allam BK, Singh N, Kumari K, Singh SK, Singh KN. Org. Lett. 2015; 17: 2656
    • 21j Du BN, Li Z, Qian P, Han JL, Pan Y. Chem. Asian J. 2016; 11: 478
    • 21k Su Y, Zhou X, He C, Zhang W, Ling X, Xiao X. J. Org. Chem. 2016; 81: 4981
    • 21l Paul S, Shrestha R, Edison TN. J. I, Lee YR, Kim SH. Adv. Synth. Catal. 2016; 358: 3050
    • 21m Senadi GC, Guo B.-C, Hu W.-P, Wang J.-J. Chem. Commun. 2016; 52: 11410
    • 21n Yang F.-L, Tian S.-K. Tetrahedron Lett. 2017; 58: 487
    • 21o Choudhuri K, Achar TK, Mal P. Adv. Synth. Catal. 2017; 359: 3566
    • 21p Chen Q, Huang Y, Wang X, Wu J, Yu G. Org. Biomol. Chem. 2018; 16: 1713
  • 22 Rezaei N, Movassagh B. Tetrahedron Lett. 2016; 57: 1625
  • 23 Song G.-L, Zhang Z, Da Y.-X, Wang X.-C. Tetrahedron 2015; 71: 8823
  • 24 Choudhuri K, Maiti S, Mal P. Adv. Synth. Catal. 2019; 361: 1092
  • 25 Granoth I. J. Chem. Soc., Perkin Trans. 1 1974; 2166
  • 26 Ganesan P, Mannem A, Muthukumaran N. J. Organomet. Chem. 2019; 884: 29
  • 27 Li M, Hoover JM. Chem. Commun. 2016; 52: 8733
  • 28 Fu W, Liu T, Fang Z, Ma Y, Zheng X, Wang W, Ni X, Hu M, Tang T. Chem. Commun. 2015; 51: 5890
  • 29 Chen W, Zhu L, Hao Y, Yue X, Gai J, Xiao Q, Huang S, Sheng J, Song X. Tetrahedron 2017; 73: 4529
  • 30 Rostami A, Rostami A, Ghaderi A, Gholinejad M, Gheisarzadeh S. Synthesis 2017; 49: 5025
  • 31 Yang FL, Gui Y, Yu BK, Jin YX, Tian SK. Adv. Synth. Catal. 2016; 358: 3368
  • 32 Fakhry J, Grayson DH. Tetrahedron 2018; 74: 556
  • 33 Garnier T, Danel M, Magné V, Pujol A, Bénéteau V, Pale P, Chassaing S. J. Org. Chem. 2018; 83: 6408