Synthesis 2020; 52(08): 1247-1252
DOI: 10.1055/s-0039-1690756
special topic
© Georg Thieme Verlag Stuttgart · New York

Rhodium(III)-Catalyzed Three-Component 1,2-Diamination of Unactivated Terminal Alkenes

Sumin Lee
,
Young Jin Jang
,
Erik J. T. Phipps
,
Honghui Lei
,
Department of Chemistry, Columbia University, New York, NY 10027, USA   eMail: tr2504@columbia.edu
› Institutsangaben
We thank the National Institute of General Medical Sciences (NIGMS, Grant No. GM80442) for support.
Weitere Informationen

Publikationsverlauf

Received: 30. Oktober 2019

Accepted: 08. November 2019

Publikationsdatum:
04. Dezember 2019 (online)


Dedicated to Professor Mark Lautens on the occasion of his 70th birthday

Published as part of the Special Topic Domino C–H Functionalization Reaction/Cascade Catalysis

Abstract

We report a three-component diamination of simple unactivated alkenes using an electrophilic nitrene source and amine nucleo­philes. The reaction provides rapid access to 1,2-vicinal diamines from terminal alkenes through a one-pot protocol. The transformation proceeds smoothly with excellent tolerance for a broad array of primary and secondary amines, affording the desired products in good yield and regioselectivity. The mechanism is proposed to proceed through a Rh(III)-catalyzed aziridination of alkenes with subsequent ring opening by primary or secondary amines.

Supporting Information

 
  • References

    • 1a Kotti SS. R. S, Timmons C, Li G. Chem. Biol. Drug Des. 2006; 67: 101
    • 1b Lucet D, Le Gall T, Mioskowski C. Angew. Chem. Int. Ed. 1998; 37: 2580
    • 1c Cardona F, Goti A. Nat. Chem. 2009; 1: 269
    • 2a Handa S, Gnanadesikan V, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 4925
    • 2b Rampalakos C, Wulff WD. Adv. Synth. Catal. 2008; 350: 1785
    • 2c Anderson JC, Howell GP, Lawrence RM, Wilson CS. J. Org. Chem. 2005; 70: 5665
    • 3a Bandar JS, Lambert TH. J. Am. Chem. Soc. 2013; 135: 11799
    • 3b Kano T, Sakamoto R, Akakura M, Maruoka K. J. Am. Chem. Soc. 2012; 134: 7516
  • 4 Reetz MT, Jaeger R, Drewlies R, Hübel M. Angew. Chem. Int. Ed. 1991; 30: 103
    • 5a Chong AO, Oshima K, Sharpless KB. J. Am. Chem. Soc. 1977; 99: 3420
    • 5b Bäckvall J.-E. Tetrahedron Lett. 1978; 19: 163
    • 5c Becker PN, White MA, Bergman RG. J. Am. Chem. Soc. 1980; 102: 5676
    • 6a Streuff J, Hövelmann CH, Nieger M, Muñiz K. J. Am. Chem. Soc. 2005; 127: 14586
    • 6b Bar GL. J, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2005; 127: 7308
    • 6c Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 762
    • 6d Khoder ZM, Wong CE, Chemler SR. ACS Catal. 2017; 7: 4775
    • 6e Olson DE, Su JY, Roberts DA, Du Bois J. J. Am. Chem. Soc. 2014; 136: 13506
    • 6f Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
    • 7a McCoull W, Davis FA. Synthesis 2000; 1347
    • 7b Hu XE. Tetrahedron 2004; 60: 2701
    • 7c Pineschi M. Eur. J. Org. Chem. 2006; 4979
    • 7d Schneider C. Angew. Chem. Int. Ed. 2009; 48: 2082
  • 8 Lee S, Lei H, Rovis T. J. Am. Chem. Soc. 2019; 141: 12536
  • 9 Itoh T, Matsueda T, Shimizu Y, Kanai M. Chem. Eur. J. 2015; 21: 15955
  • 10 Kitagawa T, Nishino J, Inomata T, Ozawa T, Funahashi Y, Masuda H. Chem. Commun. 2016; 52: 4780
  • 11 Semakul N, Jackson KE, Paton RS, Rovis T. Chem. Sci. 2017; 8: 1015