Synthesis 2020; 52(03): 337-352
DOI: 10.1055/s-0039-1690733
short review
© Georg Thieme Verlag Stuttgart · New York

Azaheterocyclic Derivatives of ortho-Carborane: Synthetic Strategies and Application Opportunities

Lidiia A. Smyshliaeva
a  Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
b  I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russian Federation   Email: chupakhin@ios.uran.ru
,
a  Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
b  I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russian Federation   Email: chupakhin@ios.uran.ru
,
Valery N. Charushin
a  Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
b  I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russian Federation   Email: chupakhin@ios.uran.ru
,
a  Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
b  I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russian Federation   Email: chupakhin@ios.uran.ru
› Author Affiliations
The study was supported by the Ministry of Education and Science of the Russian Federation (State contract 4.6351.2017/8.9) and Russian Science Foundation (Project 18-13-00365).
Further Information

Publication History

Received: 25 August 2019

Accepted after revision: 03 October 2019

Publication Date:
28 October 2019 (online)

Abstract

Azaheterocyclic derivatives of 1,2-dicarba-closo-dodeca­borane (ortho-carborane) are known to be of particular interest due to numerous plausible applications, particularly, in medicine, materials science, and advanced technologies. Three principal synthetic strategies resulting in azaheterocyclic carboranes, in which boron-enriched and azaheterocyclic fragments are linked to each other, either directly by means of the C–C bonds or through a short spacer (CH2, CH2S, CH2O, etc.), have been outlined. These synthetic approaches are of general character and can be used both individually and in combination to afford promising organoboron clusters of diverse architectures.

1 Introduction

2 C–C Cross-Coupling Strategies in the Synthesis of Azahetero­cyclic Carboranes

3 Carboryne-Based Transformation Strategies

4 Condensation Strategies: Reactions of Decaborane B10H14 with Substituted Acetylenes

5 Conclusion and Outlook

 
  • References

  • 1 Grimes RN. Carboranes, 2nd ed. Academic Press; New York: 2011
    • 2a King RB. J. Organomet. Chem. 2007; 692: 1773
    • 2b Scholz M, Hey-Hawkins E. Chem. Rev. 2011; 111: 7035
    • 2c Oliva JM, Schleyer PR, Aullon G, Burgos JI, Fernandez-Barberoe A, Alkorta I. Phys. Chem. Chem. Phys. 2010; 12: 5101
    • 3a Grimes RN. Dalton Trans. 2015; 44: 5939
    • 3b Goszczyński TM, Fink K, Boratyński J. Expert Opin. Biol. Ther. 2018; 205
    • 4a Winberg KJ, Barbera G, Eriksson L, Teixidor F, Tolmachev V, Vinas C, Sjoberg S. J. Organomet. Chem. 2003; 680: 188
    • 4b Gona KB, Gomez-Vallejo V, Padro D, Llop J. Chem. Commun. 2013; 49: 11491
    • 4c Gona KB, Zaulet A, Gómez-Vallejo V, Teixidor F, Llop J, Viñas C. Chem. Commun. 2014; 50: 11415
    • 4d Tiwari R, Toppino A, Agarwal HK, Huo T, Byun Y, Gallucci J, Hasabelnaby S, Khalil A, Goudah A, Baiocchi RA, Darby MV, Barth RF, Tjarks W. Inorg. Chem. 2012; 51: 629
    • 4e Papagiannopoulou D. J. Labelled Compd. Radiopharm. 2017; 60: 502
    • 6a Issa F, Kassiou M, Rendina LM. Chem. Rev. 2011; 111: 5701
    • 6b Ohta K, Goto T, Fujii S, Kawahata M, Oda A, Ohta S, Yamaguchi K, Hirono S, Endo Y. Bioorg. Med. Chem. 2011; 19: 3540
    • 6c Lesnikowski ZJ. Collect. Czech. Chem. Commun. 2007; 72: 1646
    • 6d Wilkinson SM, Gunosewoyo H, Barron ML, Boucher A, McDonnell M, Turner P, Morrison DE, Bennett MR, McGregor IS, Rendina LM, Kassiou M. ACS Chem. Neurosci. 2014; 5: 335
    • 6e Stockmann P, Gozzi M, Kuhnert R, Sárosi MB, Hey-Hawkins E. Chem. Soc. Rev. 2019; 48: 3497
    • 7a Fujii S, Masuno H, Taoda Y, Kano A, Wongmayura A, Nakabayashi M, Ito N, Shimizu M, Kawachi E, Hirano T, Endo Y, Tanatani A, Kagechika H. J. Am. Chem. Soc. 2011; 133: 20933
    • 7b Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG. Expert Opin. Ther. Pat. 2014; 24: 485
    • 7c Fujii S, Sekine R, Kano A, Masuno H, Songkram C, Kawachi E, Hirano T, Tanatani A, Kagechika H. Bioorg. Med. Chem. 2014; 22: 5891
    • 8a Yao Z.-J, Jin G.-X. Coord. Chem. Rev. 2013; 257: 2522
    • 8b Qiu Z, Ren S, Xie Z. Acc. Chem. Res. 2011; 44: 299
    • 8c Tutusaus O, Viñas C, Núñez R, Teixidor F, Demonceau A, Delfosse S, Noels AF, Mata I, Molins E. J. Am. Chem. Soc. 2003; 125: 11830
    • 9a Tanaka K, Chujo Y. Macromol. Rapid Commun. 2012; 33: 1235
    • 9b Weber L, Kahlert J, Brockhinke R, Böhling L, Halama J, Brockhinke A, Stammler HG, Neumann B, Nervi C, Harder RA, Fox MA. Dalton Trans. 2013; 42: 10982
    • 9c Ferrer-Ugalde A, González-Campo A, Viñas C, Rodríguez-Romero J, Santillan R, Farfán N, Sillanpää R, Sousa-Pedrares A, Núñez R, Teixidor F. Chem. Eur. J. 2014; 20: 9940
    • 9d Gon M, Tanaka K, Chujo Y. Polym. J. 2018; 50: 109
    • 10a Viñas C, Teixidor F, Núñez R. Inorg. Chim. Acta 2014; 409: 12
    • 10b Ludlow JM. III, Tominaga M, Chujo Y, Schultz A, Lu X, Xie T, Guo K, Moorefield CN, Wesdemiotis C, Newkome GR. Dalton Trans. 2014; 43: 9604
    • 10c Jude H, Disteldorf H, Fischer S, Wedge T, Hawkridge AM, Arif AM, Hawthorne MF, Muddiman DC, Stang PJ. J. Am. Chem. Soc. 2005; 127: 12131
    • 11a Schinazi RF, Hurwitz SJ, Liberman I, Glazkova Y, Mourier NS, Olson J, Keane T. Nucleosides, Nucleotides Nucleic Acids 2004; 23: 291
    • 11b Bednarska K, Olejniczak AB, Wojtczak BA, Sułowska Z, Leśnikowski ZJ. ChemMedChem 2010; 5: 749
    • 11c Wojtczak BA, Olejniczak AB, Wang L, Eriksson S, Lesnikowski ZJ. Nucleosides, Nucleotides Nucleic Acids 2013; 32: 571
    • 11d Scholz M, Blobaum AL, Marnett LJ, Hey-Hawkins E. Bioorg. Med. Chem. 2011; 19: 3242
    • 11e Endo Y, Yoshimi T, Kimura K, Itai A. Bioorg. Med. Chem. Lett. 1999; 9: 2561
  • 12 Joule JA, Mills K. Heterocyclic Chemistry, 5th ed. Wiley; Chichester: 2013
    • 13a Yoo J, Do Y. Dalton Trans. 2009; 4978
    • 13b Agarwal HK, McElroy CA, Sjuvarsson E, Eriksson S, Darby MV, Tjarks W. Eur. J. Med. Chem. 2013; 60: 456
    • 13c da Silva AF, Seixas RS, Silva AM, Coimbra J, Fernandes AC, Santos JP, Matos A, Rino J, Santos I, Marques F. Org. Biomol. Chem. 2014; 12: 5201
  • 14 Terrasson V, Planas JG, Viñas C, Teixidor F, Prim D, Light ME, Hursthouse MB. Organometallics 2010; 29: 4130
    • 15a Lee YH, Park J, Jo S.-J, Kim M, Lee J, Lee SU, Lee MH. Chem. Eur. J. 2015; 21: 2052
    • 15b Bae HJ, Kim H, Lee KM, Kim T, Eo M, Lee YS, Do Y, Lee MH. Dalton Trans. 2013; 42: 8549
    • 15c Bae HJ, Chung J, Kim H, Park J, Lee KM, Koh TW, Lee YS, Yoo S, Do Y, Lee MH. Inorg. Chem. 2014; 53: 128
    • 15d Prokhorov AM, Slepukhin PA, Rusinov VL, Kalinin VN, Kozhevnikov DN. Chem. Commun. 2011; 47: 7713
  • 16 Wang X, Jin GX. Chem. Eur. J. 2005; 11: 5758
    • 17a Zhao J, Jiang S, Yeqing C, Chen X, Yang Q, Yin C. Polyhedron 2018; 142: 105
    • 17b Weber L, Kahlert J, Brockhinke R, Böhling L, Brockhinke A, Stammler H.-G, Neumann B, Harder RA, Fox MA. Chem. Eur. J. 2012; 18: 8347
  • 18 Coult R, Fox MA, Gill WR, Herbertson PL, MacBride JA. H, Wade K. J. Organomet. Chem. 1993; 462: 19
  • 19 Alekseyeva ES, Batsanov AS, Boyd LA, Fox MA, Hibbert TG, Howard JA. K, MacBride JA. H, Mackinnon A, Wade K. Dalton Trans. 2003; 475
  • 20 Axtell JC, Kirlikovali KO, Djurovich PI, Jung D, Nguyen VT, Munekiyo B, Royappa AT, Rheingold AL, Spokoyny AM. J. Am. Chem. Soc. 2016; 138: 15758
    • 21a Teixidor F, Laromaine A, Kivekas R, Sillanpaa R, Vinas C, Vespalec R, Horakov H. Dalton Trans. 2008; 345
    • 21b Batsanov AS, Fox MA, Hibbert TG, Howard JA. K, Kivekäs R, Laromaine A, Sillanpää R, Viñas C, Wade K. Dalton Trans. 2004; 3822
  • 22 Armspach D, Constable EC, Housecroft CE, Neuburger M, Zehnder M. J. Organomet. Chem. 1997; 550: 193
  • 23 Lee C.-H, Lim H.-G, Nakamura H, Kang SO. Appl. Organomet. Chem. 2003; 539
    • 24a Lee C.-H, Jin GF, Yoon JH, Jung YJ, Lee J.-D, Cho S, Nakamura H, Kang SO. Tetrahedron Lett. 2008; 49: 159
    • 24b Nakamura H, Shoji A, Takeuchi A, Ban HS, Lee J.-D, Yamori T, Kang SO. Aust. J. Chem. 2011; 64: 1430
  • 25 Ni H, Qiu Z, Xie Z. Angew. Chem. Int. Ed. 2017; 56: 712
    • 27a Zakharkin LI, Litovchenko LE, Kazantsev AV. Zh. Obshch. Khim. 1970; 40: 125
    • 27b Kazantsev AV, Litovchenko LI. Zh. Obshch. Khim. 1971; 41: 1057
    • 27c Drygina OV, Garnovskii AD. Chem. Heterocycl. Compd. 1983; 19: 463
  • 28 Chupakhin ON, Prokhorov AM, Kozhevnikov DN, Rusinov VL, Glukhov IA, Starikova ZA, Ol’shevskaya VA, Kalinin VN, Antipin MYu. Russ. Chem. Bull. 2004; 53: 1223
  • 29 Prokhorov AM, Hofbeck T, Czerwieniec R, Suleymanova AF, Kozhevnikov DN, Yersin H. J. Am. Chem. Soc. 2014; 136: 9637
  • 30 Galliamova L, Varaksin M, Chupakhin O, Slepukhin P, Charushin V. Organometallics 2015; 34: 5285
  • 31 Varaksin M, Galliamova L, Stepanova O, Eltsov O, Chupakhin O, Charushin V. J. Organomet. Chem. 2017; 830: 93
  • 32 Smyshliaeva LA, Varaksin MV, Slepukhin PA, Chupakhin ON, Charushin VN. Beilstein J. Org. Chem. 2018; 14: 2618
  • 33 Gingrich HL, Ghosh T, Huang Q, Jones MJr. J. Am. Chem. Soc. 1990; 112: 4082
  • 34 Zhao D, Xie Z. Coord. Chem. Rev. 2016; 314: 14
  • 35 Zhao D, Zhang J, Xie Z. J. Am. Chem. Soc. 2015; 137: 9423
  • 36 Zhao D, Zhang J, Xie Z. J. Am. Chem. Soc. 2015; 137: 13938
  • 37 Dols PP. M. A, Folmer BJ. B, Hamersma H, Kuil CW, Lucas H, Ollero L, Rewinkel JB. M, Hermkens PH. H. Bioorg. Med. Chem. Lett. 2008; 18: 1461
  • 38 Fein MM, Bobinski J, Mayers N, Schwartz NN, Cohen MS. Inorg. Chem. 1963; 2: 1111
  • 39 Calabrese G, Daou A, Barbu E, Tsibouklis J. Drug Discovery Today 2018; 23: 63
    • 40a Yamamoto Y, Seko T, Nakamura H, Nemoto H, Hojo H, Mukai N, Hashmioto Y. J. Chem. Soc., Chem. Commun. 1992; 157
    • 40b Lesnikowski ZJ, Shi J, Schinazi RF. J. Organomet. Chem. 1999; 581: 156
  • 41 Yamamoto Y, Seko T, Nakamura H, Nemoto H. Heteroat. Chem. 1992; 3: 239
  • 42 Goudgaon NM, El-Kattan YA, Xia X, McAtee J, Soria J, Wey S.-J, Liotta DC, Schinazi RF. Nucleosides, Nucleotides Nucleic Acids 1997; 16: 2133
  • 43 Mourier NS, Eleuteri A, Hurwitz SJ, Tharnish PM, Schinazi RF. Bioorg. Med. Chem. 1999; 7: 2759
  • 44 Tanui HK, Hao E, Ihachi MI, Fronczek FR, Smith KM, Vicente MG. H. J. Porphyrins Phthalocyanines 2011; 15: 412
  • 45 Fabre B, Clark JC, Vicente MG. H. Macromolecules 2006; 39: 112
  • 46 Reynolds RC, Trask TW, Sedwick WD. J. Org. Chem. 1991; 56: 2391
  • 47 Neirynck P, Schimer J, Jonkheijm P, Milroy L.-G, Cigler P, Brunsveld L. J. Mater. Chem. B 2015; 3: 539
    • 48a Kindahl T, Chorell E. Org. Biomol. Chem. 2014; 12: 4461
    • 48b Dehmel L, Berbdat F, Weinberger M, Sajadi M, Loffe I, Wagenknecht HA, Ernsting P. Phys. Chem. Chem. Phys. 2016; 18: 6813
  • 49 Genady AR. Eur. J. Med. Chem. 2009; 44: 409
  • 50 González SJ, Bonomi MR, Santa Cruz GA, Blaumann HR, Calzetta Larrieu OA, Menéndez P, Jiménez Rebagliati R, Longhino J, Feld DB, Dagrosa MA, Argerich C, Castiglia SG, Batistoni DA, Liberman SJ, Roth BM. Appl. Radiat. Isot. 2004; 61: 1107
  • 51 Li X, Tong X, Yan H, Lu C, Zhao Q, Huang W. Chem. Eur. J. 2016; 22: 17282