Synthesis 2020; 52(01): 51-59
DOI: 10.1055/s-0039-1690728
feature
© Georg Thieme Verlag Stuttgart · New York

POxAP Precatalysts and the Negishi Cross-Coupling Reaction

Shuang-Qi Tang
,
Martine Schmitt
,
Frédéric Bihel
Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200, Labex Médalis, CNRS, Université de Strasbourg, 74 Route du Rhin, 67412 Illkirch, France   Email: fbihel@unistra.fr
› Author Affiliations
S.-Q. Tang’s Ph.D. scholarship was funded by the Ministry of Education of the People’s Republic of China, China Scholarship Council (Grant No. 201608310124).
Further Information

Publication History

Received: 13 September 2019

Accepted after revision: 30 September 2019

Publication Date:
28 October 2019 (online)


Abstract

Recently developed for the Fukuyama reaction, post-oxidative addition precatalysts (POxAPs) are also very efficient in catalyzing Negishi cross-coupling reactions between organohalides and organozinc reagents. Using very low catalyst loadings, POxAPs show similar catalytic activities to those of classical precatalysts such as XPhos Pd G4 or PEPPSI-IPr, with turnover numbers of up to 93,000. POxAPs are easily prepared, are stable to air and moisture, tolerate a wide range of functional groups in the Negishi cross-coupling reaction and contribute advantageously to the arsenal of organic chemists in terms of Pd precatalysts.

Supporting Information

 
  • References

    • 1a Barl NM, Malakhov V, Mathes C, Lustenberger P, Knochel P. Synthesis 2015; 47: 692
    • 1b Milne JE, Buchwald SL. J. Am. Chem. Soc. 2004; 126: 13028
    • 1c Lee H, Lee Y, Cho SH. Org. Lett. 2019; 21: 5912
    • 1d Xia T, He L, Liu YA, Hartwig JF, Liao X. Org. Lett. 2017; 19: 2610
    • 1e Duez S, Bernhardt S, Heppekausen J, Fleming FF, Knochel P. Org. Lett. 2011; 13: 1690
    • 1f Melzig L, Stemper J, Knochel P. Synthesis 2010; 2085
  • 2 Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 0025
  • 3 Tang SQ, Bricard J, Schmitt M, Bihel F. Org. Lett. 2019; 21: 844
    • 4a Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 4b Sekiya A, Ishikawa N. J. Organomet. Chem. 1976; 118: 349
  • 5 Fauvarque JF, Jutand A. J. Organomet. Chem. 1979; 177: 273
  • 6 Flemming JP, Pilon MC, Borbulevitch OY, Antipin MY, Grushin VV. Inorg. Chim. Acta 1998; 280: 87
  • 7 Bruno NC, Tudge MT, Buchwald SL. Chem. Sci. 2013; 4: 916
  • 8 Valente C, Belowich ME, Hadei N, Organ MG. Eur. J. Org. Chem. 2010; 4343
  • 9 Dong Z.-B, Manolikakes G, Shi L, Knochel P, Mayr H. Chem. Eur. J. 2010; 16: 248
  • 10 Negishi E, Xu CD, Tan Z, Kotora M. Heterocycles 1997; 46: 209
  • 11 Yamanaka H, Annaka M, Kondo Y, Sakamoto T. Chem. Pharm. Bull. 1985; 33: 4309
  • 12 Ingoglia BT, Buchwald SL. Org. Lett. 2017; 19: 2853
  • 13 Metzger A, Schade MA, Knochel P. Org. Lett. 2008; 10: 1107
  • 14 Krasovskiy A, Knochel P. Synthesis 2006; 890
  • 15 Schade MA, Manolikakes G, Knochel P. Org. Lett. 2010; 12: 3648
  • 16 Tsang MY, Viñas C, Teixidor F, Planas JG, Conde N, SanMartin R, Herrero MT, Domínguez E, Lledós A, Vidossich P, Choquesillo-Lazarte D. Inorg. Chem. 2014; 53: 9284
  • 17 Li X, Feng Y, Lin L, Zou G. J. Org. Chem. 2012; 77: 10991
  • 18 Zhang L, Ang GY, Chiba S. Org. Lett. 2011; 13: 1622
  • 19 Runyon SP, Peddi S, Savage JE, Roth BL, Glennon RA, Westkaemper RB. J. Med. Chem. 2002; 45: 1656
  • 20 Maity P, Shacklady-McAtee DM, Yap GP. A, Sirianni ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
  • 21 Cheng Y, Dong W, Wang L, Parthasarathy K, Bolm C. Org. Lett. 2014; 16: 2000
  • 22 Baguley TD, Xu H.-C, Chatterjee M, Nairn AC, Lombroso PJ, Ellman JA. J. Med. Chem. 2013; 56: 7636
  • 23 McLaughlin M. Org. Lett. 2005; 7: 4875
  • 24 Yoon S, Hong MC, Rhee H. J. Org. Chem. 2014; 79: 4206
  • 25 Kick EK, Smallheer JM, Shaw SA, Vokits BP, Dilger AK, Clark CG, Valente MN, Jusuf S, Wurtz NR. WO2017161145, 2017
  • 26 García Martínez A, Osío Barcina J, del Rosario Colorado Heras M, de Fresno Cerezo Á. Organometallics 2001; 20: 1020
  • 27 Kuriyama M, Shinozawa M, Hamaguchi N, Matsuo S, Onomura O. J. Org. Chem. 2014; 79: 5921
  • 28 Molander GA, Elia MD. J. Org. Chem. 2006; 71: 9198
  • 29 Evindar G, Batey RA. J. Org. Chem. 2006; 71: 1802
  • 30 Lapointe D, Fagnou K. Org. Lett. 2009; 11: 4160
  • 31 Huang J.-R, Bolm C. Angew. Chem. Int. Ed. 2017; 56: 15921
  • 32 Kuriyama M, Matsuo S, Shinozawa M, Onomura O. Org. Lett. 2013; 15: 2716
  • 33 Billingsley K, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3358
  • 34 Xia Y, Hu F, Liu Z, Qu P, Ge R, Ma C, Zhang Y, Wang J. Org. Lett. 2013; 15: 1784
  • 35 Menghin S, Pertz HH, Kramer K, Seifert R, Schunack W, Elz S. J. Med. Chem. 2003; 46: 5458
  • 36 Maia Alessandra A, Mons S, Pereira de Freitas Gil R, Marazano C. Eur. J. Org. Chem. 2004; 1057
  • 37 Geyer R, Igel P, Kaske M, Elz S, Buschauer A. MedChemComm 2014; 5: 72
  • 38 Phan HT, Nguyen LM, Azoulay R, Diep VV, Niesor EJ, Bentzen CL, Ife RJ. WO2003068240, 2003
  • 39 Zhu Y.-G, Kan H.-Z, Jiang L.-Q, Hu W.-H. Synth. Commun. 2012; 42: 1137
  • 40 Gärtner D, Stein AL, Grupe S, Arp J, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 10545
  • 41 Feng Y.-S, Xie C.-Q, Qiao W.-L, Xu H.-J. Org. Lett. 2013; 15: 936