Synthesis 2020; 52(02): 189-196
DOI: 10.1055/s-0039-1690713
short review
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Preparation and Reactions of Chiral Secondary Alkyllithiums

Juri Skotnitzki
,
Alexander Kremsmair
,
Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstr. 5-13, 81377 München, Germany   Email: [email protected]
› Author Affiliations
We thank the SFB 749 for financial support. J.S. thanks the FCI foundation for a fellowship.
Further Information

Publication History

Received: 16 September 2019

Accepted after revision: 20 September 2019

Publication Date:
08 October 2019 (online)


In memory of Prof. Dr. Dieter Enders

Abstract

The preparation of chiral non-stabilized open-chain alkyl­lithium reagents prepared from the corresponding chiral secondary alkyl iodides and their subsequent transmetalation to the corresponding secondary alkylcopper or alkylzinc derivatives is reviewed. These new organometallic reagents allow the stereoselective preparation of a broad range of chiral molecules.

1 Introduction

2 Stereoselective Preparation of Secondary Alkyllithiums

3 Preparation of Stereodefined Secondary Alkylcopper Reagents

4 Preparation of Stereodefined Secondary Alkylzinc Derivatives and Their Stereoselective Cross-Coupling with Alkenyl and Aryl Halides­

5 Conclusion

 
  • References

  • 1 Science of Synthesis, Vol. 8a. Majewski M, Snieckus V. Georg Thieme Verlag; Stuttgart: 2006
  • 3 Hase AT. Umpoled Synthons: A Survey of Sources and Uses in Synthesis. John Wiley & Sons; New York: 1987
  • 4 Seebach D. Synthesis 1969; 17
  • 5 Seebach D. Angew. Chem. 1979; 91: 259
    • 6a Hoppe D, Hense T. Angew. Chem. Int. Ed. 1997; 36: 2282
    • 6b Hoppe D. Synthesis 2009; 43
    • 6c Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
  • 7 Seel S, Dagousset G, Thaler T, Frischmuth A, Karaghiosoff K, Zipse H, Knochel P. Chem. Eur. J. 2013; 19: 4614
  • 8 Moriya K, Simon M, Mose R, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 10963
  • 9 Skotnitzki J., Kremsmair A., Keefer D., Gong Y., de Vivie-Riedle R., Knochel P.; Angew. Chem. Int. Ed.; 2019, in press; DOI: 10.1002/anie.201910397
  • 10 Morozova V, Skotnitzki J, Moriya K, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 5516
    • 11a Bailey WF, Brubaker JD, Jordan KP. J. Organomet. Chem. 2003; 681: 210
    • 11b Dagousset G, Moriya K, Mose R, Berionni G, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 1425
  • 12 Moriya K, Didier D, Simon M, Hammann JM, Berionni G, Karaghiosoff K, Zipse H, Mayr H, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 2754
  • 13 Simon M, Karaghiosoff K, Knochel P. Org. Lett. 2018; 20: 3518
  • 14 Morozova V, Moriya K, Mayer P, Knochel P. Chem. Eur. J. 2016; 22: 9962
  • 16 Skotnitzki J, Spessert L, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 1509
    • 17a Des Mazery R, Pullez M, Lopez F, Harutyunyan SR, Minnaard AJ, Feringa BL. J. Am. Chem. Soc. 2005; 127: 9966
    • 17b Yadav JS, Sengupta S, Yadav NN, Narasimha CD, Al Ghamdi AA. Tetrahedron Lett. 2012; 53: 5952
    • 18a Commercon A, Normant JF, Villieras J. Tetrahedron 1980; 36: 1215
    • 18b Yeh MC. P, Knochel P. Tetrahedron Lett. 1989; 30: 4799
    • 18c Knochel P, Millot N, Rodriguez AL, Tucker CE. Org. React. 2001; 58: 417
    • 18d Cahiez G, Gager O, Buendia J. Angew. Chem. Int. Ed. 2010; 49: 1278
  • 19 Skotnitzki J, Morozova V, Knochel P. Org. Lett. 2018; 20: 2365
  • 20 Moriya K, Schwaerzer K, Karaghiosoff K, Knochel P. Synthesis 2016; 48: 3141
    • 21a Harrington-Frost N, Leuser H, Calaza MI, Kneisel FF, Knochel P. Org. Lett. 2003; 5: 2111
    • 21b Soorukram D, Knochel P. Org. Lett. 2004; 6: 2409
    • 21c Calaza MI, Hupe E, Knochel P. Org. Lett. 2003; 5: 1059
    • 21d Leuser H, Perrone S, Liron F, Kneisel FF, Knochel P. Angew. Chem. Int. Ed. 2005; 44: 4627
    • 21e Soorukram D, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 3686
    • 21f Perrone S, Knochel P. Org. Lett. 2007; 9: 1041
    • 21g Breit B, Demel P. Tetrahedron 2000; 56: 2833
    • 21h Breit B, Demel P, Studte C. Angew. Chem. Int. Ed. 2004; 43: 3786
    • 21i Ibuka T, Habashita H, Otaka A, Fujii N, Oguchi Y, Uyehara T, Yamamoto Y. J. Org. Chem. 1991; 56: 4370
    • 21j Falciola CA, Tissot-Croset K, Alexakis A. Angew. Chem. Int. Ed. 2006; 45: 5995
    • 21k Malda H, van Zijl AW, Arnold LA, Feringa BL. Org. Lett. 2001; 3: 1169
    • 21l Luchaco-Cullis CA, Mizutani H, Murphy KE, Hoveyda AH. Angew. Chem. Int. Ed. 2001; 40: 1456
    • 21m Larsen AO, Leu W, Oberhuber CN, Campbell JE, Hoveyda AH. J. Am. Chem. Soc. 2004; 126: 11130
    • 22a van Zijl AW, Szymanski W, Lopez F, Minnaard AJ, Feringa BL. J. Org. Chem. 2008; 73: 6994
    • 22b Zhao J, Burgess K. J. Am. Chem. Soc. 2009; 131: 13236
  • 23 Poppe L, Novak L, Kolonits P, Bata A, Szantay C. Tetrahedron 1988; 44: 1477
  • 24 Okochi T, Mori K. Eur. J. Org. Chem. 2001; 2145
  • 26 Calimsiz S, Organ MG. Chem. Commun. 2011; 47: 5181
    • 27a Kalvet I, Sperger T, Scattolin T, Magnin G, Schoenebeck F. Angew. Chem. Int. Ed. 2017; 56: 7078
    • 27b Keaveney ST, Kundu G, Schoenebeck F. Angew. Chem. Int. Ed. 2018; 57: 12573