Synthesis 2020; 52(01): 27-39
DOI: 10.1055/s-0039-1690695
short review
© Georg Thieme Verlag Stuttgart · New York

The Bonding and Reactivity of α-Carbonyl Cyclopropanes

Alexander J. Craig
,
Department of Chemistry, University of Otago, Dunedin, New Zealand   Email: [email protected]   Email: [email protected]
› Author Affiliations
We thank the University of Otago and the Department of Chemistry for financial support.
Further Information

Publication History

Received: 19 July 2019

Accepted after revision: 12 September 2019

Publication Date:
01 October 2019 (online)


Abstract

The cyclopropane functionality has been exploited in a myriad of settings that range from total synthesis and methodological chemistry, to medical and materials science. While it has been seen in such a breadth of settings, the typical view of the cyclopropane moiety is that its reactivity is derived primarily from the release of ring strain. While this simplified view is a useful shorthand, it ignores the specific nature of cyclopropyl molecular orbitals. This review aims to present the different facets of cyclopropane bonding by examining the main models that have been used to explain the reactivity of the functionality over the years. However, even with advanced theory, being able to precisely predict the reactivity of an exact system is nigh impossible. Specifically chosen, carbonyl-bearing cyclopropyl species act as so-called acceptor cyclopropanes and, if correctly derivatised, donor–acceptor cyclopropanes. By undertaking a case study of the history of carbonyl cyclopropanes in organic synthesis, this review highlights the relationship between the understanding of theory and pattern recognition in developing new synthetic methods and showcases those successful in balancing this critical junction.

1 Cyclopropanes

2 The Strain Model

3 The Forster–Coulsin–Moffit Model

4 The Walsh Model

5 Acceptor, Donor, and Donor–Acceptor Cyclopropanes

6 Reactions of Carbonyl Cyclopropanes

 
  • References

  • 1 Chen DY. K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
  • 2 Kulinkovich OG. Chem. Rev. 2003; 103: 2597
  • 3 Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
  • 4 Tang P, Qin Y. Synthesis 2012; 44: 2969
  • 5 Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
  • 6 Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
  • 7 Salaun J. Chem. Rev. 1989; 89: 1247
  • 8 Paquette LA. Chem. Rev. 1986; 86: 733
  • 9 Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
  • 10 Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
  • 11 Lee CC, Hahn B.-S, Wan K.-M, Woodcock DJ. J. Org. Chem. 1969; 34: 3210
  • 12 Osdene TS, Timmis GM, Maguire MH, Shaw G, Goldwhite H, Saunders BC, Clark ER, Epstein PF, Lamchen M, Stephen AM, Tipper CF. H, Eaborn C, Mukerjee SK, Seshadri TR, Willenz J, Robinson R, Thomas AF, Hickman JR, Kenyon J, Crocker HP, Hall RH, Burnell RH, Taylor WI, Watkins WM, Barton DH. R, Ives DA. J, Thomas BR. J. Chem. Soc. 1955; 2038
  • 13 Geiseler G. Ber. Bunsen-Ges. 1970; 74: 727
  • 14 Berson JA, Pedersen LD, Carpenter BK. J. Am. Chem. Soc. 1976; 98: 122
  • 15 Ackermann T. Ber. Bunsen-Ges. 1969; 73: 241
  • 16 Coulson CA, Moffitt WE. J. Chem. Phys. 1947; 15: 151
  • 17 Coulson CA, Moffitt WE. Philos. Mag. (1798-1977) 1949; 40: 1
  • 18 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. J. Chem. Soc., Perkin Trans. 2 1987; S1
  • 19 de Meijere A. Angew. Chem., Int. Ed. Engl. 1979; 18: 809
  • 20 Walsh AD. Nature 1947; 159: 165
  • 21 Walsh AD. J. Chem. Soc., Faraday Trans. 1949; 45: 179
  • 22 Honegger E, Heilbronner E, Schmelzer A. New J. Chem. 1982; 6: 519
  • 23 Baranac-Stojanović M, Stojanović M. J. Org. Chem. 2013; 78: 1504
  • 24 Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
  • 25 Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
  • 26 Bone WA, Perkin WH. J. Chem. Soc. Trans. 1895; 67: 108
  • 27 Kohler EP, Conant JB. J. Am. Chem. Soc. 1917; 39: 1404
  • 28 Daviaud G, Miginiac P. Tetrahedron Lett. 1972; 13: 997
  • 29 de Graaf SA. G, Pandit UK. Tetrahedron 1973; 29: 2141
  • 30 Wenkert E, McPherson CA, Sanchez EL, Webb RL. Synth. Commun. 1973; 3: 255
  • 31 Danishefsky S, Dynak J. Tetrahedron Lett. 1975; 16: 79
  • 32 Trost BM, Frazee WJ. J. Am. Chem. Soc. 1977; 99: 6124
  • 33 Tunemoto D, Araki N, Kondo K. Tetrahedron Lett. 1977; 18: 109
  • 34 Böhm I, Schulz R, Reissig H.-U. Tetrahedron Lett. 1982; 23: 2013
  • 35 Reichelt I, Reissig H.-U. Liebigs Ann. Chem. 1984; 1984: 820
  • 36 Brückner C, Reissig H.-U. J. Chem. Soc., Chem. Commun. 1985; 1512
  • 37 Kametani T, Katoh T, Tsubuki M, Honda T. Chem. Pharm. Bull. 1985; 33: 61
  • 38 Mitsuru N, Shinji T, Michihisa H, Yoshihiko M. Chem. Lett. 1985; 14: 613
  • 39 Blanchard LA, Schneider JA. J. Org. Chem. 1986; 51: 1372
  • 40 Vardapetyan AA, Khachatryan DS, Panosyan GA, Morlyan NM. Zh. Org. Khim. 1986; 22: 2266
  • 41 Miura K, Fugami K, Oshima K, Utimoto K. Tetrahedron Lett. 1988; 29: 5135
  • 42 Yu M, Pantos GD, Sessler JL, Pagenkopf BL. Org. Lett. 2004; 6: 1057
  • 43 Young IS, Kerr MA. Angew. Chem. Int. Ed. 2003; 42: 3023
  • 44 Fang J, Ren J, Wang Z. Tetrahedron Lett. 2008; 49: 6659
  • 45 Campbell MJ, Johnson JS. J. Am. Chem. Soc. 2009; 131: 10370
  • 46 De Simone F, Saget T, Benfatti F, Almeida S, Waser J. Chem. Eur. J. 2011; 17: 14527
  • 47 Wei Y, Lin S, Xue H, Liang F, Zhao B. Org. Lett. 2012; 14: 712
  • 48 Miyake Y, Endo S, Moriyama T, Sakata K, Nishibayashi Y. Angew. Chem. Int. Ed. 2013; 52: 1758
  • 49 Li M, Lin S, Dong Z, Zhang X, Liang F, Zhang J. Org. Lett. 2013; 15: 3978
  • 50 Ren J, Bai Y, Tao W, Wang Z. Tetrahedron Lett. 2014; 55: 2545
  • 51 Mackay WD, Fistikci M, Carris RM, Johnson JS. Org. Lett. 2014; 16: 1626
  • 52 Cui B, Ren J, Wang Z. J. Org. Chem. 2014; 79: 790
  • 53 Wei F, Ren C.-L, Wang D, Liu L. Chem. Eur. J. 2015; 21: 2335
  • 54 Tsunoi S, Maruoka Y, Suzuki I, Shibata I. Org. Lett. 2015; 17: 4010
  • 55 Craig AJ, van der Salm L, Stevens-Cullinane L, Lucas NT, Tan EW, Hawkins BC. Org. Lett. 2015; 17: 234
  • 56 Smith RJ, Mills DA, Nhu D, Tan EW, Lucas NT, Hawkins BC. J. Org. Chem. 2016; 81: 2099
  • 57 Craig AJ, Hawkins BC. Synthesis 2017; 49: 1955
  • 58 Fu X, Lin L, Xia Y, Zhou P, Liu X, Feng X. Org. Biomol. Chem. 2016; 14: 5914
  • 59 Dange NS, Robert F, Landais Y. Org. Lett. 2016; 18: 6156
  • 60 Sandridge MJ, France S. Org. Lett. 2016; 18: 4218
  • 61 Smith RJ, Nhu D, Clark MR, Gai S, Lucas NT, Hawkins BC. J. Org. Chem. 2017; 82: 5317
  • 62 Zhang J, Tang Y, Wei W, Wu Y, Li Y, Zhang J, Zheng Y, Xu S. Org. Lett. 2017; 19: 3043
  • 63 Schneider TF, Kaschel J, Dittrich B, Werz DB. Org. Lett. 2009; 11: 2317
  • 64 Schneider TF, Kaschel J, Awan SI, Dittrich B, Werz DB. Chem. Eur. J. 2010; 16: 11276
  • 65 Kumar P, Dey R, Banerjee P. Org. Lett. 2018; 20: 5163
  • 66 Kreft A, Jones PG, Werz DB. Org. Lett. 2018; 20: 2059
  • 67 Gai S, Lucas NT, Hawkins BC. Org. Lett. 2019; 21: 2872