Synthesis 2019; 51(20): 3792-3795
DOI: 10.1055/s-0039-1690151
psp
© Georg Thieme Verlag Stuttgart · New York

A Practical Synthesis of Ammonia from Nitrogen Gas, Samarium Diiodide and Water Catalyzed by a Molybdenum–PCP Pincer Complex

Yuya Ashida
a  Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan   Email: ynishiba@sys.t.u-tokyo.ac.jp
,
Shoichi Kondo
b  Materials Research Laboratories, Nissan Chemical Corporation, Funabashi-shi, Chiba, 274-0052, Japan
,
Kazuya Arashiba
a  Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan   Email: ynishiba@sys.t.u-tokyo.ac.jp
,
Takamasa Kikuchi
b  Materials Research Laboratories, Nissan Chemical Corporation, Funabashi-shi, Chiba, 274-0052, Japan
,
c  Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
,
Seizo Kakimoto
d  Advanced Materials & Planning Department, Nissan Chemical Corporation, Nihonbashi, Chuo-ku, Tokyo, 103-6119, Japan
,
a  Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan   Email: ynishiba@sys.t.u-tokyo.ac.jp
› Author Affiliations
This project is supported by Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST) (JPMJCR1541). We thank the Japan Society for the Promotion of Science (JSPS) for Grants-in-Aid for Scientific Research (JP17H01201, JP15H05798 and JP18K19093) from JSPS and the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Y.A. is a recipient of a JSPS Predoctoral Fellowship for Young Scientists.
Further Information

Publication History

Received: 25 June 2019

Accepted after revision: 12 July 2019

Publication Date:
15 August 2019 (online)


Abstract

A practical method for ammonia synthesis is described. The reaction of atmospheric pressure of nitrogen gas with samarium diiodide as a reducing reagent and water as a proton source in the presence of a catalytic amount of a molybdenum trichloride complex bearing a PCP [1,3-bis(di-tert-butylphosphinomethyl)benzimidazol-2-ylidene]-type pincer ligand occurs under ambient conditions to afford ammonium sulfate after treatment with sulfuric acid.

 
  • References

  • 1 Liu H. Ammonia Synthesis Catalysts, Innovation and Practice . Chemical Industry Press & World Scientific; Singapore/Beijing: 2013

    • For recent selected reviews, see:
    • 2a Burford RJ, Fryzuk MD. Nat. Rev. 2017; 1: 26
    • 2b Nitrogen Fixation . In Topics in Organometallic Chemistry, Vol. 60. Nishibayashi Y. Springer; Switzerland: 2017
    • 2c Foster SL, Bakovic SI. P, Duda RD, Maheshwari S, Milton RD, Minteer SD, Janik MJ, Renner JN, Greenlee LF. Nat. Catal. 2018; 1: 490
    • 2d Stucke N, Flöser BM, Weyrich T, Tuczek T. Eur. J. Inorg. Chem. 2018; 1337
    • 2e Nishibayashi Y. Dalton Trans. 2018; 47: 11290
    • 2f Tanabe Y, Nishibayashi Y. Coord. Chem. Rev. 2019; 381: 135
    • 2g Tanabe Y, Nishibayashi Y. Coord. Chem. Rev. 2019; 389: 73
    • 2h Transition Metal-Dinitrogen Complexes: Preparation and Reactivity. Nishibayashi Y. Wiley-VCH; Weinheim: 2019
    • 3a Yondulov DV, Schrock RR. Science 2003; 301: 76
    • 3b Schrock RR. Acc. Chem. Res. 2005; 38: 955
    • 3c Schrock RR. Angew. Chem. Int. Ed. 2008; 47: 5512
    • 3d Wickramasinghe LA, Ogawa T, Schrock RR, Müller P. J. Am. Chem. Soc. 2017; 139: 9132
    • 4a Anderson JS, Rittle J, Peters JC. Nature 2013; 501: 84
    • 4b Del Castillo TJ, Thompson NB, Suess DL. M, Ung G, Peters JC. Inorg. Chem. 2015; 54: 9256
    • 4c Buscagan TM, Oyala PH, Peters JC. Angew. Chem. Int. Ed. 2017; 56: 6921
    • 4d Fajardo JJr, Peters JC. J. Am. Chem. Soc. 2017; 139: 16105
    • 4e Chalkley MJ, Del Castillo TJ, Matson BD, Roddy JP, Peters JC. ACS Cent. Sci. 2017; 3: 217
    • 4f Chalkley MJ, Del Castillo TJ, Matson BD, Peters JC. J. Am. Chem. Soc. 2018; 140: 6122
    • 4g Thompson NB, Oyala PH, Dong HT, Chalkley MJ, Zhao J, Alp EE, Hu M, Lehnert N, Peters JC. Inorg. Chem. 2019; 58: 3535
    • 4h Schild DJ, Peters JC. ACS Catal. 2019; 9: 4386
    • 4i Nesbit MA, Oyala PH, Peters JC. J. Am. Chem. Soc. 2019; 141: 8116
  • 5 Doyle LR, Wooles AJ, Jenkins LC, Tuna F, McInnes EJ. L, Liddle ST. Angew. Chem. Int. Ed. 2018; 57: 6314
    • 6a Arashiba K, Miyake Y, Nishibayashi Y. Nat. Chem. 2011; 3: 120
    • 6b Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y. J. Am. Chem. Soc. 2014; 136: 9719
    • 6c Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K, Nishibayashi Y. Nat. Commun. 2014; 5: 3737
    • 6d Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa Y, Nishibayashi Y. Chem. Sci. 2015; 6: 3940
    • 6e Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y. J. Am. Chem. Soc. 2015; 137: 5666
    • 6f Kuriyama S, Arashiba K, Nakajima K, Matsuo Y, Tanaka H, Ishii K, Yoshizawa K, Nishibayashi Y. Nat. Commun. 2016; 7: 12181
    • 6g Kuriyama S, Arashiba K, Tanaka H, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 14291
    • 6h Eizawa A, Arashiba K, Tanaka H, Kuriyama S, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y. Nat. Commun. 2017; 8: 14874
    • 6i Arashiba K, Eizawa A, Tanaka H, Nakajima K, Yoshizawa K, Nishibayashi Y. Bull. Chem. Soc. Jpn. 2017; 90: 1111
    • 6j Sekiguchi Y, Kuriyama S, Eizawa A, Arashiba K, Nakajima K, Nishibayashi Y. Chem. Commun. 2017; 53: 12040
    • 6k Higuchi J, Kuriyama S, Eizawa A, Arashiba K, Nakajima K, Nishibayashi Y. Dalton Trans. 2018; 47: 1117
    • 6l Sekiguchi Y, Arashiba K, Tanaka H, Eizawa A, Nakajima K, Yoshizawa K, Nishibayashi Y. Angew. Chem. Int. Ed. 2018; 57: 9064
    • 6m Sekiguchi Y, Meng F, Tanaka H, Eizawa A, Arashiba K, Nakajima K, Yoshizawa K, Nishibayashi Y. Dalton Trans. 2018; 47: 11322
    • 6n Itabashi T, Mori I, Arashiba K, Eizawa A, Nakajima K, Nishibayashi Y. Dalton Trans. 2019; 48: 3182
    • 6o Eizawa A, Arashiba K, Egi A, Tanaka H, Nakajima K, Yoshizawa K, Nishibayashi Y. Chem. Asian J. 2019; 14: 2091
    • 6p Itabashi T, Arashiba K, Tanaka H, Konomi A, Eizawa A, Nakajima K, Yoshizawa K, Nishibayashi Y. Organometallics 2019; 38: 2863
    • 6q Arashiba K, Itabashi T, Nakajima K, Nishibayashi Y. Chem. Lett. 2019; 48: 693
  • 7 Ashida Y, Arashiba K, Nakajima K, Nishibayashi Y. Nature 2019; 568: 536
  • 8 Ashida Y, Arashiba K, Tanaka H, Egi A, Nakajima K, Yoshizawa K, Nishibayashi Y. Inorg. Chem. 2019; 58: 8927
  • 9 Matoba K, Eizawa A, Nishimura S, Arashiba K, Nakajima K, Nishibayashi Y. Synthesis 2018; 50: 1015
  • 10 Watson PL, Tulip TH, Williams I. Organometallics 1990; 9: 1999
  • 11 Weatherburn MW. Anal. Chem. 1967; 39: 971