Synlett 2019; 30(16): 1867-1885
DOI: 10.1055/s-0039-1690129
account
© Georg Thieme Verlag Stuttgart · New York

The Fascinating World of Phosphanylphosphonates: From Acetylenic Phosphaalkenes to Reductive Aldehyde Couplings

Juri Mai
,
Sascha Ott
Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden   eMail: sascha.ott@kemi.uu.se
› Institutsangaben
We gratefully acknowledge the funding supplied by Uppsala University and the Swedish Research Council for our group’s activities in phosphaorganic chemistry.
Weitere Informationen

Publikationsverlauf

Received: 14. Juni 2019

Accepted after revision: 06. Juli 2019

Publikationsdatum:
13. August 2019 (online)


Dedicated to Professor Rüdiger Faust

Abstract

This account highlights the versatility of phosphanylphosphonates, which can be used for the preparation of phosphorus-containing π-systems and as reagents for the reductive coupling of carbonyl compounds to alkenes. Phosphanylphosphonates with metal fragments coordinated to the P-lone pair have been known for a long time and they have been used for the synthesis of phosphaalkenes by means of the phospha-Horner–Wadsworth–Emmons reaction. With the original aim of incorporating phosphorus heteroatoms into classical all-carbon ethynylethene scaffolds, we entered the field of phosphanylphosphonates with the discovery that these compounds engage in complex cascade reactions with acetylenic ketones, forming 1,2-oxaphospholes, cumulenes, and bisphospholes. Later, we synthesized the first metal-free phosphanylphosphonate, which reacts with aldehydes to yield phosphaalkenes, but gives phospholones when diacetylenic ketones are used as substrates. In the final part of the account, we outline our discovery and the development of an unprecedented carbonyl–carbonyl cross-coupling reaction. This protocol offers a straightforward method for the synthesis of nonsymmetric 1,2-disubstituted alkenes directly from two dissimilar aldehydes.

1 Combining Acetylenes with Phosphaalkenes

2 Synthetic Examples of Acetylenic Phosphaalkenes

3 The Phospha-Horner–Wadsworth–Emmons Approach to Phosphaalkenes

3.1 Metal-Coordinated Phosphanylphosphonates

3.2 Mechanism of the Phospha-Horner–Wadsworth–Emmons Reaction

3.3 The First Metal-Free Phosphanylphosphonate and Its Reactivity with Aldehydes

4 Reactions with Acetylenic Ketones

4.1 Metal-Coordinated Phosphanylphosphonate and Monoacetylenic Ketones

4.2 Metal-Coordinated Phosphanylphosphonate and Diacetylenic Ketones

4.3 Metal-Free Phosphanylphosphonate and Diacetylenic Ketones

5 Metal-Free Phosphanylphosphonate as a Coupling Reagent for Aldehydes

6 E-Alkenes by the Reductive Coupling of Two Aldehydes

7 Conclusions and Outlook

 
  • References

  • 1 Nielsen MB, Diederich F. Chem. Rev. 2005; 105: 1837
    • 2a Maier ME. Synlett 1995; 3
    • 2b Nicolaou KC, Dai W.-M. Angew. Chem. Int. Ed. 1991; 30: 1387
    • 2c Smith AL, Nicolaou KC. J. Med. Chem. 1996; 39: 2103
  • 3 Acetylene Chemistry: Chemistry, Biology, and Material Science . Diederich F. Stang PJ. Tykwinski RR. Wiley-VCH; Weinheim: 2005
    • 4a Nielsen MB, Diederich F. Synlett 2002; 544
    • 4b Nielsen MB, Diederich F. Chem. Rec. 2002; 2: 189
    • 4c Martin RE, Mäder T, Diederich F. Angew. Chem. Int. Ed. 1999; 38: 817
  • 7 Dillon KB, Mathey F, Nixon JF. Phosphorus: The Carbon Copy: From Organophosphorus to Phospha-Organic Chemistry. Wiley; Chichester: 1998
  • 8 Mathey F. Angew. Chem. Int. Ed. 2003; 42: 1578
  • 9 Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed. Cornell University Press; Ithaca: 1960: 88
    • 10a Waluk J, Klein HP, Ashe AJ, Michl J. Organometallics 1989; 8: 2804
    • 10b Schoeller WW. J. Chem. Soc., Chem. Commun. 1985; 334
    • 12a Nauroozi D, Orthaber A. Eur. J. Inorg. Chem. 2016; 2016: 709
    • 12b Simpson MC, Protasiewicz JD. Pure Appl. Chem. 2013; 85: 801
  • 13 Le Floch P. Coord. Chem. Rev. 2006; 250: 627
  • 14 Weber L. Eur. J. Inorg. Chem. 2000; 2000: 2425
    • 15a Baumgartner T, Réau R. Chem. Rev. 2006; 106: 4681
    • 15b Shameem MA, Orthaber A. Chem. Eur. J. 2016; 22: 10718
  • 16 Schäfer B, Öberg E, Kritikos M, Ott S. Angew. Chem. Int. Ed. 2008; 47: 8228
    • 17a van der Sluis M, Klootwijk A, Wit JB. M, Bickelhaupt F, Veldman N, Spek AL, Jolly PW. J. Organomet. Chem. 1997; 529: 107
    • 17b Appel R, Casser C, Knoch F. Chem. Ber. 1984; 117: 2693
  • 18 Yoshifuji M. J. Organomet. Chem. 2000; 611: 210
    • 19a Goede SJ, Bickelhaupt F. Chem. Ber. 1991; 124: 2677
    • 19b Orthaber A, Öberg E, Jane RT, Ott S. Z. Anorg. Allg. Chem. 2012; 638: 2219
  • 20 Romanenko VD, Sanchez M, Sarina TV, Mazières M.-R, Wolf R. Tetrahedron Lett. 1992; 33: 2981
  • 21 Jun H, Young Jr VG, Angelici RJ. Organometallics 1994; 13: 2444
  • 22 Öberg E, Schäfer B, Geng X.-L, Pettersson J, Hu Q, Kritikos M, Rasmussen T, Ott S. J. Org. Chem. 2009; 74: 9265
    • 23a Reich HJ, Holladay JE. Angew. Chem. Int. Ed. 1996; 35: 2365
    • 23b Reich HJ, Holladay JE, Walker TG, Thompson JL. J. Am. Chem. Soc. 1999; 121: 9769
  • 24 Geng X.-L, Ott S. Chem. Commun. 2009; 7206
  • 25 Öberg E, Ott S. Phosphorus, Sulfur Silicon Relat. Elem. 2013; 188: 164
  • 26 Shameem MA, Esfandiarfard K, Öberg E, Ott S, Orthaber A. Chem. Eur. J. 2016; 22: 10614
    • 27a Geng X.-L, Hu Q, Schäfer B, Ott S. Org. Lett. 2010; 12: 692
    • 27b Geng X.-L, Ott S. Chem. Eur. J. 2011; 17: 12153
    • 27c Öberg E, Geng X.-L, Santoni M.-P, Ott S. Org. Biomol. Chem. 2011; 9: 6246
  • 28 Svyaschenko YV, Orthaber A, Ott S. Chem. Eur. J. 2016; 22: 4247
  • 29 Zhao Y, McDonald R, Tykwinski RR. J. Org. Chem. 2002; 67: 2805
  • 30 Martin RE, Wytko JA, Diederich F, Boudon C, Gisselbrecht J.-P, Gross M. Helv. Chim. Acta 1999; 82: 1470
  • 31 Zhao Y, Zhou N, Slepkov AD, Ciulei SC, McDonald R, Hegmann FA, Tykwinski RR. Helv. Chim. Acta 2007; 90: 909
    • 32a Eisler S, Tykwinski RR. Angew. Chem. Int. Ed. 1999; 38: 1940
    • 32b Zhao Y, Ciulei SC, Tykwinski RR. Tetrahedron Lett. 2001; 42: 7721
  • 33 Bruschi M, Giuffreda MG, Lüthi HP. Chem. Eur. J. 2002; 8: 4216
  • 34 Shah S, Protasiewicz JD. Coord. Chem. Rev. 2000; 210: 181
    • 35a Le Floch P, Marinetti A, Ricard L, Mathey F. J. Am. Chem. Soc. 1990; 112: 2407
    • 35b Le Floch P, Mathey F. Synlett 1990; 171
    • 36a Shah S, Concolino T, Rheingold AL, Protasiewicz JD. Inorg. Chem. 2000; 39: 3860
    • 36b Shah S, Protasiewicz JD. Chem. Commun. 1998; 1585
    • 37a Marinetti A, Mathey F. Angew. Chem., Int. Ed. Engl. 1988; 27: 1382
    • 37b Marinetti A, Bauer S, Ricard L, Mathey F. Organometallics 1990; 9: 793
    • 37c Marinetti A, Ricard L, Mathey F. Organometallics 1990; 9: 788
  • 38 Marinetti A, Mathey F. Tetrahedron 1989; 45: 3061
  • 39 Bauer S, Marinetti A, Mathey F. Heteroat. Chem. 1991; 2: 277
  • 40 Arkhypchuk AI, Santoni M.-P, Ott S. Organometallics 2012; 31: 1118
  • 41 De Vaumas R, Marinetti A, Ricard L, Mathey F. J. Am. Chem. Soc. 1992; 114: 261
  • 42 Mathey F, Marinetti A, Bauer S, Le Floch P. Pure Appl. Chem. 1991; 63: 855
    • 43a Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
    • 43b Edmonds M, Abell A. In Modern Carbonyl Olefinations . Takeda T. Wiley-VCH; Weinheim: 2003: 1
    • 43c Appel R, Loos R, Mayr H. J. Am. Chem. Soc. 2009; 131: 704
  • 44 Arkhypchuk AI, Svyaschenko YV, Orthaber A, Ott S. Angew. Chem. Int. Ed. 2013; 52: 6484
  • 45 Smith RC, Protasiewicz JD. J. Am. Chem. Soc. 2004; 126: 2268
  • 46 Esfandiarfard K, Arkhypchuk AI, Orthaber A, Ott S. Dalton Trans. 2016; 45: 2201
    • 47a Cowley AH, Kilduff JE, Newman TH, Pakulski M. J. Am. Chem. Soc. 1982; 104: 5820
    • 47b Issleib K, Schmidt H, Wirkner C. Z. Anorg. Allg. Chem. 1982; 488: 75
    • 48a Couret C, Escudie J, Ranaivonjatovo H, Satge J. Organometallics 1986; 5: 113
    • 48b Märkl G, Kreitmeier P. Angew. Chem. Int. Ed. 1988; 27: 1360
    • 49a Arkhypchuk AI, Orthaber A, Mihali VA, Ehlers A, Lammertsma K, Ott S. Chem. Eur. J. 2013; 19: 13692
    • 49b Arkhypchuk AI, Santoni M.-P, Ott S. Angew. Chem. Int. Ed. 2012; 51: 7776
    • 49c Obermeier M, Arkhypchuk AI. J. Org. Chem. 2019; 84: 3491
  • 50 Arkhypchuk AI, Mijangos E, Lomoth R, Ott S. Chem. Eur. J. 2014; 20: 16083
    • 51a Brown GW. J. Chem. Soc. C 1967; 2018
    • 51b Braña MF, Morán M, de Vega MJ. P, Pita-Romero I, Walker N. Tetrahedron 1995; 51: 9127
    • 51c Barluenga J, Lopez F, Palacios F, Sánchez-Ferrando F. Tetrahedron Lett. 1988; 29: 381
  • 52 Esfandiarfard K, Mai J, Ott S. J. Am. Chem. Soc. 2017; 139: 2940
    • 53a Ephritikhine M, Villiers C. In Modern Carbonyl Olefination . Takeda T. Wiley-VCH; Weinheim: 2003: 223
    • 53b McMurry JE. Chem. Rev. 1989; 89: 1513
    • 53c McMurry JE, Fleming MP. J. Am. Chem. Soc. 1974; 96: 4708
    • 54a Hoge B, Bader J, Beckers H, Kim YS, Eujen R, Willner H, Ignatiev N. Chem. Eur. J. 2009; 15: 3567
    • 54b Hoge B, Garcia P, Willner H, Oberhammer H. Chem. Eur. J. 2006; 12: 3567
    • 54c Hoge B, Neufeind S, Hettel S, Wiebe W, Thösen C. J. Organomet. Chem. 2005; 690: 2382
    • 54d Kurscheid B, Wiebe W, Neumann B, Stammler H.-G, Hoge B. Eur. J. Inorg. Chem. 2011; 2011: 5523
    • 54e Bloomfield AJ, Qian JM, Herzon SB. Organometallics 2010; 29: 4193
  • 55 Mai J, Arkhypchuk AI, Gupta AK, Ott S. Chem. Commun. 2018; 54: 7163
  • 56 Arkhypchuk AI, D’Imperio N, Ott S. Org. Lett. 2018; 20: 5086
  • 57 Arkhypchuk AI, D’Imperio N, Ott S. Chem. Commun. 2019; 55: 6030