Synlett 2019; 30(11): 1321-1323
DOI: 10.1055/s-0039-1689926
letter
© Georg Thieme Verlag Stuttgart · New York

Dialkylation of Ethyl 4-(Het)aryl-3-oxobutanoates as a Route to 5-(2-Oxoethyl)cyclopentenones

a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation   Email: lvov-andre@yandex.ru
,
Alexey V. Zakharov
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation   Email: lvov-andre@yandex.ru
,
Konstantin A. Lyssenko
b   Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russian Federation
,
Vadim V. Kachala
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation   Email: lvov-andre@yandex.ru
,
Valerii Z. Shirinian
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation   Email: lvov-andre@yandex.ru
› Author Affiliations
Authors are grateful to Russian Foundation for Basic Research for financial support (grant 18-33-00394).
Further Information

Publication History

Received: 20 March 2019

Accepted after revision: 10 May 2019

Publication Date:
24 May 2019 (online)


Abstract

An unexplored ability of the long-known chemical transformation, Borsche’s cyclopentenone synthesis (the construction of a 1,4-diketone with subsequent base-induced cyclization), is reported. Double alkylation of ethyl 4-(het)aryl-3-oxobutanoates with 2-bromo-1-(het)arylethanones, with subsequent alkali treatment, provides access to cyclopentenones substituted with a 2-oxoethyl group at the 5-position. These products might serve as valuable synthons for heterocyclization, and this feature was demonstrated by synthesis of 4H-cyclopenta[b]thiophene derivatives.

Supporting Information

 
  • References and Notes

  • 4 Borsche W, Klein A. Chem. Ber. 1939; 72: 2082
  • 8 Ethyl 3-(4-Methyl-2-phenyl-1,3-thiazol-5-yl)-4-(4-nitrophenyl)-1-[2-(4-nitrophenyl)-2-oxoethyl]-2-oxocyclopent-3-ene-1-carboxylate (5b) Na (35 mg, 1.05 equiv) was added to a solution of oxo ester 1 (1.5 mmol) in anhyd benzene (5 mL) and the mixture was stirred for 2 h. Bromo ketone 2 (1.5 mmol) was then added and the mixture was kept overnight, then poured into H2O (100 mL) and extracted with EtOAc (3 × 50 mL). The combined organic phases were washed with H2O (100 mL), dried (MgSO4), and concentrated in vacuum. The residue was purified by column chromatography [silica gel, PE–EtOAc (5:1)] to give a yellow powder; yield: 192 mg (42%); mp 156–157 °C. 1H NMR (300 MHz, CDCl3): δ = 1.25 (t, J = 7.1 Hz, 3 H), 2.09 (s, 3 H), 3.23 (d, J = 18.5 Hz, 1 H), 3.56 (d, J = 18.5 Hz, 1 H), 4.03 (d, J = 18.5 Hz, 1 H), 4.21–4.30 (m, 2 H), 4.28 (d, J = 18.5 Hz, 1 H), 7.70 (d, J = 8.9 Hz, 2 H), 8.19 (d, J = 8.8 Hz, 2 H), 8.26 (d, J = 8.9 H, 2 H z), 8.36 (d, J = 8.8 Hz, 2 H), 7.44–7.47 (m, 3 H), 7.93–7.96 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 14.0, 16.4, 41.5, 43.6, 56.5, 62.6, 119.7, 124.0 (2 C), 124.1 (2 C), 125.6, 126.5 (2 C), 128.8 (2 C), 129.0 (2 C), 129.2 (2 C), 130.4, 131.7, 133.1, 140.4, 140.7, 148.7, 150.7, 152.6, 166.4, 168.7, 168.9, 200.7. HRMS (ESI-TOF): m/z [M + H]+ calcd for C32H26N3O8S: 612.1435; found: 612.1429.
  • 9 Khaghaninejad S, Heravi M. Adv. Heterocycl. Chem. 2014; 111: 95
  • 11 Liu Y, Li Y, Qi Y, Wan J. Synthesis 2010; 4188
  • 14 2,5,6-Tri(het)aryl-4H-cyclopenta[b]thiophenes 8e–h; General Procedure The appropriate 5-(2-oxoethyl)cyclopentenone derivative 7 (0.2 mmol) was dissolved in dry toluene (3 mL), and Lawesson's reagent (0.089 g, 0.22 mmol) was added. The resulting mixture was refluxed for 0.5 h then poured into H2O (100 mL) and extracted with EtOAc (3 × 50 mL). The combined organic phases were washed with H2O (100 mL), dried (MgSO4), and concentrated under vacuum. The residue was purified by column chromatography [silica gel, PE–EtOAc (15:1)].
  • 15 CCDC 1904288 contains the supplementary crystallographic data for compound 9. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.