Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(11): 1321-1323
DOI: 10.1055/s-0039-1689926
DOI: 10.1055/s-0039-1689926
letter
Dialkylation of Ethyl 4-(Het)aryl-3-oxobutanoates as a Route to 5-(2-Oxoethyl)cyclopentenones
Authors are grateful to Russian Foundation for Basic Research for financial support (grant 18-33-00394).Further Information
Publication History
Received: 20 March 2019
Accepted after revision: 10 May 2019
Publication Date:
24 May 2019 (online)
Abstract
An unexplored ability of the long-known chemical transformation, Borsche’s cyclopentenone synthesis (the construction of a 1,4-diketone with subsequent base-induced cyclization), is reported. Double alkylation of ethyl 4-(het)aryl-3-oxobutanoates with 2-bromo-1-(het)arylethanones, with subsequent alkali treatment, provides access to cyclopentenones substituted with a 2-oxoethyl group at the 5-position. These products might serve as valuable synthons for heterocyclization, and this feature was demonstrated by synthesis of 4H-cyclopenta[b]thiophene derivatives.
Key words
cyclopentenones - cyclization - heterocyclization - diketones - Borsche’s synthesis - cyclopentathiopheneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1689926.
- Supporting Information
-
References and Notes
- 1a Aitken DJ, Eijsberg H, Frongia A, Ollivier J, Piras PP. Synthesis 2014; 46: 1
- 1b Simeonov SP, Nunes JP. M, Guerra K, Kurteva VB, Afonso CA. M. Chem. Rev. 2016; 116: 5744
- 2a Borsche W, Fels A. Ber. Dtsch. Chem. Ges. 1906; 39: 1922
- 2b Borsche W, Menz W. Ber. Dtsch. Chem. Ges. 1908; 41: 190
- 3a Finch N, Fitt JJ, Hsu IH. C. J. Org. Chem. 1971; 36: 3191
- 3b Nam N.-H, Kim Y, You Y.-J, Hong D.-H, Kim H.-M, Ann B.-Z. Arch. Pharmacal. Res. 2002; 25: 600
- 3c Lahmar N, Ben Ayed T, Bellassoued M, Amri H. Beilstein J. Org. Chem. 2005; 1: 11
- 3d Alhamadsheh MM, Gupta S, Hudson RA, Perera L, Tillekeratne LM. V. Chem. Eur. J. 2008; 14: 570
- 3e Lonshakov DV, Shirinian VZ, Zavarzin IV, Lvov AG, Krayushkin MM. Dyes Pigm. 2014; 109: 105
- 3f Yang J, Mei F, Fu S, Gu Y. Green Chem. 2018; 20: 1367
- 4 Borsche W, Klein A. Chem. Ber. 1939; 72: 2082
- 5a Shirinian VZ, Shimkin AA, Lonshakov DV, Lvov AG, Krayushkin MM. J. Photochem. Photobiol., A 2012; 233: 1
- 5b Shirinian VZ, Lvov AG, Krayushkin MM, Lubuzh ED, Nabatov BV. J. Org. Chem. 2014; 79: 3440
- 5c Shirinian VZ, Lvov AG, Bulich EYu, Zakharov AV, Krayushkin MM. Tetrahedron Lett. 2015; 56: 5477
- 5d Lvov AG, Bulich EYu, Metelitsa AV, Shirinian VZ. RSC Adv. 2016; 6: 59016
- 5e Shirinian VZ, Lonshakov DV, Lvov AG, Kavun AM, Yadykov AV, Krayushkin MM. Dyes Pigm. 2016; 124: 258
- 6a Lvov AG, Shirinian VZ, Kachala VV, Kavun AM, Zavarzin IV, Krayushkin MM. Org. Lett. 2014; 16: 4532
- 6b Lvov AG, Shirinian VZ, Zakharov AV, Krayushkin MM, Kachala VV, Zavarzin IV. J. Org. Chem. 2015; 80: 11491
- 7a Weiß KM, Wei S, Tsogoeva SB. Org. Biomol. Chem. 2011; 9: 3457
- 7b Wei S, Weiß KM, Tsogoeva SB. Synthesis 2012; 44: 3441
- 8 Ethyl 3-(4-Methyl-2-phenyl-1,3-thiazol-5-yl)-4-(4-nitrophenyl)-1-[2-(4-nitrophenyl)-2-oxoethyl]-2-oxocyclopent-3-ene-1-carboxylate (5b) Na (35 mg, 1.05 equiv) was added to a solution of oxo ester 1 (1.5 mmol) in anhyd benzene (5 mL) and the mixture was stirred for 2 h. Bromo ketone 2 (1.5 mmol) was then added and the mixture was kept overnight, then poured into H2O (100 mL) and extracted with EtOAc (3 × 50 mL). The combined organic phases were washed with H2O (100 mL), dried (MgSO4), and concentrated in vacuum. The residue was purified by column chromatography [silica gel, PE–EtOAc (5:1)] to give a yellow powder; yield: 192 mg (42%); mp 156–157 °C. 1H NMR (300 MHz, CDCl3): δ = 1.25 (t, J = 7.1 Hz, 3 H), 2.09 (s, 3 H), 3.23 (d, J = 18.5 Hz, 1 H), 3.56 (d, J = 18.5 Hz, 1 H), 4.03 (d, J = 18.5 Hz, 1 H), 4.21–4.30 (m, 2 H), 4.28 (d, J = 18.5 Hz, 1 H), 7.70 (d, J = 8.9 Hz, 2 H), 8.19 (d, J = 8.8 Hz, 2 H), 8.26 (d, J = 8.9 H, 2 H z), 8.36 (d, J = 8.8 Hz, 2 H), 7.44–7.47 (m, 3 H), 7.93–7.96 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 14.0, 16.4, 41.5, 43.6, 56.5, 62.6, 119.7, 124.0 (2 C), 124.1 (2 C), 125.6, 126.5 (2 C), 128.8 (2 C), 129.0 (2 C), 129.2 (2 C), 130.4, 131.7, 133.1, 140.4, 140.7, 148.7, 150.7, 152.6, 166.4, 168.7, 168.9, 200.7. HRMS (ESI-TOF): m/z [M + H]+ calcd for C32H26N3O8S: 612.1435; found: 612.1429.
- 9 Khaghaninejad S, Heravi M. Adv. Heterocycl. Chem. 2014; 111: 95
- 10a Baran PS, DeMartino MP. Angew. Chem. Int. Ed. 2006; 45: 7083
- 10b DeMartino MP, Chen K, Baran PS. J. Am. Chem. Soc. 2008; 130: 11546
- 11 Liu Y, Li Y, Qi Y, Wan J. Synthesis 2010; 4188
- 12a Miura K, Saito H, Wang D, Hosomi A. Org. Lett. 2001; 3: 2591
- 12b Rössle M, Werner T, Baro A, Frey W, Christoffers J. Angew. Chem. Int. Ed. 2004; 43: 6547
- 12c Che C, Qian Z, Wu M, Zhao Y, Zhu G. J. Org. Chem. 2018; 83: 5665
- 13a Stetter H, Simons L. Chem. Ber. 1985; 118: 3172
- 13b Palani N, Rajamannar T, Balasubramanian KK. Synlett 1997; 59
- 13c Stepherson JR, Fronczek FR, Kartika R. Chem. Commun. 2016; 52: 2300
- 14 2,5,6-Tri(het)aryl-4H-cyclopenta[b]thiophenes 8e–h; General Procedure The appropriate 5-(2-oxoethyl)cyclopentenone derivative 7 (0.2 mmol) was dissolved in dry toluene (3 mL), and Lawesson's reagent (0.089 g, 0.22 mmol) was added. The resulting mixture was refluxed for 0.5 h then poured into H2O (100 mL) and extracted with EtOAc (3 × 50 mL). The combined organic phases were washed with H2O (100 mL), dried (MgSO4), and concentrated under vacuum. The residue was purified by column chromatography [silica gel, PE–EtOAc (15:1)].
- 15 CCDC 1904288 contains the supplementary crystallographic data for compound 9. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.