Synthesis 2019; 51(08): 1746-1752
DOI: 10.1055/s-0037-1612303
short review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Isothiocyanates: An Update

Kayla Eschliman
,
Kansas State University, Department of Chemistry, Manhattan, KS 66506-0401, USA   Email: [email protected]
› Author Affiliations
NIH/DHHS 1R01Al121364-01A1
Further Information

Publication History

Received: 10 December 2018

Accepted after revision: 28 January 2019

Publication Date:
14 March 2019 (online)


Abstract

Isothiocyanates (ICTs) are a group of molecules that can be used for many different purposes, they exhibit anticancer, antimicrobial, antibiotic, and anti-inflammatory properties. The synthesis of isothiocyanates has been a focus of many researchers for nearly the past 100 years. One of the most common synthetic methods is to form a dithiocarbamate salt, either as the first step or in situ, and then treat the salt with a desulfurization agent to reach the isothiocyanate. There are many different desulfurization agents available. Among these, there are eleven in particular that will be discussed in this short review, namely thiophosgene, lead nitrate, ethyl chloroformate, hydrogen peroxide, triphosgene, iodine, cobalt, copper, sodium persulfate, claycop, and tosyl­ chloride. There are four additional particular methodologies that stand out from the literature available on this topic that will be covered, namely the production of isothiocyanates from hydroximoyl chlorides, via elemental sulfur, microwave-assisted synthesis, and through the tandem Staudinger/aza-Wittig reactions.

1 Introduction

1.1 Metabolism of Glucosinolates

2 Synthesis of Isothiocyanates

2.1 Isothiocyanates from the Decomposition of Dithiocarbamate Salts

2.2 Isothiocyanates from Hydroximoyl Chlorides

2.3 Isothiocyanates Produced via Elemental Sulfur

2.4 Microwave-Assisted Synthesis of Isothiocyanates

2.5 Isothiocyanates via the Tandem Staudinger/aza-Wittig Reactions

3 Conclusion

 
  • References

  • 1 Bell L, Oloyede OO, Lignou S, Wagstaff C, Methven L. Mol. Nutr. Food Res. 2018; 62: e1700990
  • 2 Kala C, Ali SS, Ahmad N, Gilani SJ, Khan NA. Res. J. Pharmacogn. 2018; 5: 71
  • 3 Lv K, Chen J, Wang H, Zhang P, Yu M, Long Y, Yi P. Spectrochim. Acta, Part A 2017; 177: 63
  • 4 Wu C, Cheng R, Wang J, Wang Y, Jing X, Chen R, Sun L, Yan Y. J. Sep. Sci. 2018; 41: 3782
  • 5 Fu Z, Yuan W, Chen N, Yang Z, Xu J. Green Chem. 2018; 20: 4484
  • 6 Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y. Breed Sci. 2014; 64: 48
  • 7 Redovnikovic IR, Glivetic T, Delonga K, Vorkapic-Furac J. Period. Biol. 2008; 110: 297
  • 8 Yamaguchi H, Kidachi Y, Kamiie K, Noshita T, Umetsu H, Fuke Y, Ryoyama K. Biochem. Pharmacol. 2013; 86: 458
  • 9 Abreu AC, Borges A, Mergulhão F, Simões M. Int. Biodeter. Biodegr. 2014; 86: 34
  • 10 Guo M, Yadav MP, Jin TZ. Int. J. Food Microbiol. 2017; 263: 9
  • 11 Dains FB, Brewster RQ, Olander CP. Org. Synth. 1926; 6: 18
    • 12a Proshin AN, Pushin AN, Makarov MV. Chem. Heterocycl. Compd. 2007; 43: 1483
    • 12b Keana JF, Mann JS. J. Org. Chem. 1990; 55: 2868
    • 12c Shetty D, Jeong JM, Kim YJ, Lee JY, Hoigebazar L, Lee Y.-S, Lee DS, Chung J.-K. Bioorg. Med. Chem. 2012; 20: 5941
    • 12d Kazimierczak A, Zakrzewski J, Salmain M, Jaouen G. Bioconjugate Chem. 1997; 8: 489
    • 12e Fahrenholtz KE, Benz W, Blount JF, Williams TH. J. Org. Chem. 1980; 45: 4219
    • 12f Lo KK.-W, Louie M.-W, Sze K.-S, Lau JS.-Y. Inorg. Chem. 2008; 47: 602
    • 12g Halime Z, Frindel M, Camus N, Orain P.-Y, Lacombe M, Chérel M, Gestin J.-F, Faivre-Chauvet A, Tripier R. Org. Biomol. Chem. 2015; 13: 11302
    • 12h Portoghese PS, Sultana M, Takemori A. J. Med. Chem. 1990; 33: 1547
    • 12i Márquez JM, Lopez O, Maya I, Fuentes J, Fernández-Bolaños JG. Tetrahedron Lett. 2008; 49: 3912
  • 13 Chaskar AC, Yewale S, Bhagat R, Langi BP. Synth. Commun. 2008; 38: 1972
  • 14 Mesheram HM, Dale S, Yadav JS. Tetrahedron Lett. 1997; 38: 8743
  • 15 Li G, Tajima H, Ohtani T. J. Org. Chem. 1997; 62: 4539
  • 16 Nath J, Jamir L, Patel BK. Green Chem. Lett. Rev. 2011; 4: 1
  • 17 Dains FB, Brewster RQ, Olander CP. Org. Synth. 1926; 6: 72
  • 18 Hodgkins JE, Reeves WP. J. Org. Chem. 1964; 29: 3098
  • 19 Seelam M, Shaik B, Kammela PR. Synth. Commun. 2016; 46: 1759
  • 20 Mandapati U, Pinapati S, Rudraraju R. Tetrahedron Lett. 2017; 58: 125
  • 21 Wong R, Dolman SJ. J. Org. Chem. 2007; 72: 3969
  • 22 https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb: @[email protected]+861 (accessed Mar 4, 2019).
  • 23 Braverman S, Cherkinsky M, Birsa ML. In Science of Synthesis, Vol. 18. Knight JG. Georg Thieme Verlag; Stuttgart: 2005: 65
  • 24 Nyoung KJ, Ryu EK. Tetrahedron Lett. 1993; 34: 8283
  • 25 Fujiwara S.-i, Shin-Ike T, Sonoda N, Aoki M, Okada K, Miyoshi N, Kambe N. Tetrahedron Lett. 1991; 32: 3503
  • 26 Valette L, Poulain S, Fernandez X, Lizzani-Cuvelier L. J. Sulfur Chem. 2005; 26: 155
  • 27 Santhosh L, Durgamma S, Shekharappa, Babu VV. S. Org. Biomol. Chem. 2018; 16: 4874
  • 28 Isoda T, Hayashi K, Tamai S, Kumagai T, Nagao Y. Chem. Pharm. Bull. 2006; 54: 1616
  • 29 Tsai J.-T, Liu H.-C, Chen Y.-H. Mediators Inflamm. 2010; 296342