Synlett 2019; 30(06): 738-742
DOI: 10.1055/s-0037-1612278
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric α-Amination Reaction of Alkenoate Cyclic Esters Catalyzed by Chiral Tin Alkoxides

Akira Yanagisawa*
Soft Molecular Activation Research Center, Molecular Chirality Research Center, Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba 263-8522, Japan   Email: ayanagi@faculty.chiba-u.jp
,
Yoshiki Yamashita
,
Chika Uchiyama
,
Ryuta Nakano
,
Moe Horiguchi
,
Kazuki Ida
› Author Affiliations
Further Information

Publication History

Received: 23 January 2019

Accepted after revision: 07 February 2019

Publication Date:
04 March 2019 (online)


Abstract

A catalytic enantioselective α-amination reaction of alkenoate cyclic esters with dialkyl azodicarboxylates was achieved by using a 3,3′-di(1-naphthyl)-substituted (R)-BINOL–dibromostannane complex as a chiral precatalyst in the presence of a sodium alkoxide and an alcohol. Optically active α-hydrazino ketones were obtained in moderate to high yields and with up to 91% ee in the presence of the chiral tin alkoxide generated in situ.

Supporting Information

 
  • References and Notes

    • 1a Duthaler RO. Angew. Chem. Int. Ed. 2003; 42: 975
    • 1b Greck C, Drouillat B, Thomassigny C. Eur. J. Org. Chem. 2004; 1377
    • 1c Erdik E. Tetrahedron 2004; 60: 8747
    • 1d Janey JM. Angew. Chem. Int. Ed. 2005; 44: 4292
    • 1e Marigo M, Jørgensen KA. Chem. Commun. 2006; 2001
    • 1f Guillena G, Ramón DJ. Tetrahedron: Asymmetry 2006; 17: 1465
    • 1g Košmrlj J, Kočevar M, Polanc S. Synlett 2009; 2217
    • 1h Vilaivan T, Bhanthumnavin W. Molecules 2010; 15: 917
    • 1i Smith AM. R, Hii KK. Chem. Rev. 2011; 111: 1637
    • 1j Russo A, De Fusco C, Lattanzi A. RSC Adv. 2012; 2: 385
    • 1k Selig P. Angew. Chem. Int. Ed. 2013; 52: 7080
    • 1l de la Torre A, Tona V, Maulide N. Angew. Chem. Int. Ed. 2017; 56: 12416
    • 1m Kumar P, Sharma BM. Synlett 2018; 29: 1944
  • 2 Evans DA, Nelson SG. J. Am. Chem. Soc. 1997; 119: 6452

    • For notable examples of α-amination reactions with chiral metal catalysts, see:
    • 3a Evans DA, Johnson DS. Org. Lett. 1999; 1: 595
    • 3b Juhl K, Jørgensen KA. J. Am. Chem. Soc. 2002; 124: 2420
    • 3c Marigo M, Juhl K, Jørgensen KA. Angew. Chem. Int. Ed. 2003; 42: 1367
    • 3d Kim SM, Kim HR, Kim DY. Org. Lett. 2005; 7: 2309
    • 3e Bernardi L, Zhuang W, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 5772
    • 3f Foltz C, Stecker B, Marconi G, Bellemin-Laponnaz S, Wadepohl H, Gade LH. Chem. Commun. 2005; 5115
    • 3g Matsubara R, Kobayashi S. Angew. Chem. Int. Ed. 2006; 45: 7993
    • 3h Hasegawa Y, Watanabe M, Gridnev ID, Ikariya T. J. Am. Chem. Soc. 2008; 130: 2158
    • 3i Mashiko T, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 14990
    • 3j Mouri S, Chen Z, Mitsunuma H, Furutachi M, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 1255
    • 3k Deng Q.-H, Bleith T, Wadepohl H, Gade LH. J. Am. Chem. Soc. 2013; 135: 5356
    • 3l Huo H, Fu C, Wang C, Harms K, Meggers E. Chem. Commun. 2014; 50: 10409
    • 3m Lalli C, Dumoulin A, Lebée C, Drouet F, Guérineau V, Touboul D, Gandon V, Zhu J, Masson G. Chem. Eur. J. 2015; 21: 1704
    • 3n Nan J, Liu J, Zheng H, Zuo Z, Hou L, Hu H, Wang Y, Luan X. Angew. Chem. Int. Ed. 2015; 54: 2356
    • 3o Wang C, Chen L.-A, Huo H, Shen X, Harms K, Gong L, Meggers E. Chem. Sci. 2015; 6: 1094
    • 3p Lian X, Lin L, Wang G, Liu X, Feng X. Chem. Eur. J. 2015; 21: 17453
    • 3q Kumar A, Ghosh SK, Gladysz JA. Org. Lett. 2016; 18: 760
    • 3r Cakmak Y, Erbas-Cakmak S, Leigh DA. J. Am. Chem. Soc. 2016; 138: 1749
    • 3s Song J, Zhang Z.-J, Chen S.-S, Fan T, Gong L.-Z. J. Am. Chem. Soc. 2018; 140: 3177
    • 3t Trost BM, Tracy JS, Saget T. Chem. Sci. 2018; 9: 2975
    • 3u Zhang J, Fu K, Lin L, Lu Y, Liu X, Feng X. Chem. Eur. J. 2018; 24: 4289
    • 3v Han Y, Corey EJ. Org. Lett. 2019; 21: 283

      For notable examples of α-amination reactions with chiral organocatalysts, see:
    • 4a List B. J. Am. Chem. Soc. 2002; 124: 5656
    • 4b Bøgevig A, Juhl K, Kumaragurubaran N, Zhuang W, Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 1790
    • 4c Kumaragurubaran N, Juhl K, Zhuang W, Bøgevig A, Jørgensen KA. J. Am. Chem. Soc. 2002; 124: 6254
    • 4d Vogt H, Vanderheiden S, Bräse S. Chem. Commun. 2003; 2448
    • 4e Saaby S, Bella M, Jørgensen KA. J. Am. Chem. Soc. 2004; 126: 8120
    • 4f Iwamura H, Mathew SP, Blackmond DG. J. Am. Chem. Soc. 2004; 126: 11770
    • 4g Liu X, Li H, Deng L. Org. Lett. 2005; 7: 167
    • 4h Franzén J, Marigo M, Fielenbach D, Wabnitz TC, Kjærsgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
    • 4i Terada M, Nakano M, Ube H. J. Am. Chem. Soc. 2006; 128: 16044
    • 4j He R, Wang X, Hashimoto T, Maruoka K. Angew. Chem. Int. Ed. 2008; 47: 9466
    • 4k Blackmond DG, Moran A, Hughes M, Armstrong A. J. Am. Chem. Soc. 2010; 132: 7598
    • 4l Zhu C.-L, Zhang F.-G, Meng W, Nie J, Cahard D, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 5869
    • 4m Simón L, Goodman JM. J. Am. Chem. Soc. 2012; 134: 16869
    • 4n Cecere G, König CM, Alleva JL, MacMillan DW. J. Am. Chem. Soc. 2013; 135: 11521
    • 4o Takeda T, Terada M. J. Am. Chem. Soc. 2013; 135: 15306
    • 4p Shao Q, Chen J, Tu M, Piotrowski DW, Huang Y. Chem. Commun. 2013; 49: 11098
    • 4q Taylor JE, Daniels DS. B, Smith AD. Org. Lett. 2013; 15: 6058
    • 4r Nelson HM, Patel JS, Shunatona HP, Toste FD. Chem. Sci. 2015; 6: 170
    • 4s Wang S.-G, Yin Q, Zhuo C.-X, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 647
    • 4t Yang X, Toste FD. J. Am. Chem. Soc. 2015; 137: 3205
    • 4u Dumoulin A, Lalli C, Retailleau P, Masson G. Chem. Commun. 2015; 51: 5383
    • 4v Miles DH, Guasch J, Toste FD. J. Am. Chem. Soc. 2015; 137: 7632
    • 4w Shang M, Wang X, Koo SM, Youn J, Chan JZ, Yao W, Hastings BT, Wasa M. J. Am. Chem. Soc. 2017; 139: 95
    • 4x Macharia J, Wambua V, Hong Y, Harris L, Hirschi JS, Evans GB, Vetticatt MJ. Angew. Chem. Int. Ed. 2017; 56: 8756
  • 5 Yanagisawa A, Fujinami T, Oyokawa Y, Sugita T, Yoshida K. Org. Lett. 2012; 14: 2434
  • 6 Yanagisawa A, Miyake R, Yoshida K. Org. Biomol. Chem. 2014; 12: 1935
    • 7a Yanagisawa A, Satou T, Izumiseki A, Tanaka Y, Miyagi M, Arai T, Yoshida K. Chem. Eur. J. 2009; 15: 11450
    • 7b Yanagisawa A, Yoshida K. Chem. Rec. 2013; 13: 117
  • 8 Diethyl 1-(1-Benzoyl-4-ethoxy-1-methyl-4-oxobutyl)hydrazine-1,2-dicarboxylate (4ba); Typical Procedure Chiral tin dibromide 3d 7 (10.1 mg, 0.013 mmol) was dissolved in dry MeCN (1.25 mL) at r.t., and the mixture was stirred for 10 min. A solution of NaOEt in EtOH (10.5 μL, 0.025 mmol) and EtOH (175 μL, 3.0 mmol) were added, and the resulting mixture was stirred for 30 min. DEAD (43.5 mg, 0.25 mmol) and lactone 1b (70.5 mg, 0.375 mmol) in dry CHCl3 (0.25 mL) were added at r.t., and the mixture was stirred for 6 h at r.t. The mixture was then treated with solid KF (0.5 g) and brine (2 mL) at r.t. for 10 min. The resulting precipitate was collected by filtration, and the filtrate was extracted with Et2O (×3). The combined organic extracts were washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo. The residual crude product was purified by column chromatography (silica gel) to give a orange oil; yield: 63.1 mg (62%; 89% ee); [α]D 23.8 –111.1° (c 0.47, CHCl3). The enantioselectivity toward the product was determined by HPLC [Daicel Chiralpak AD-3, hexane–EtOH (20:1), flow rate: 1.0 mL/min]: t 1 = 42.1 min (major), t 2 = 64.1 min (minor). TLC: Rf  = 0.20 (EtOAc–hexane, 1:3). IR (neat): 3309, 2986, 1714, 1685, 1597, 1447, 1376, 1227, 1187, 1050, 970 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.22 (t, J = 7.2 Hz, 6 H, 2 CH3), 1.35 (t, J = 7.2 Hz, 3 H, CH3), 1.60 (s, 3 H, CH3), 2.14–2.22 (m, 1 H, one proton of CH2), 2.27–2.33 (m, 1 H, one proton of CH2), 2.50 (m, 1 H, one proton of CH2), 2.70–2.87 (m, 1 H, one proton of CH2), 3.66–4.14 (m, 5 H, 2 CH2 and NH), 4.25–4.32 (m, 2 H, CH2), 7.37–7.46 (m, 3 H, Ar-H), 8.58 (d, J = 6.8 Hz, 2 H, Ar-H). 13C NMR (125.65 MHz, CDCl3): δ = 14.0 (2 C), 14.4, 24.4, 29.3, 30.6, 60.6, 62.0, 62.7, 70.2, 128.0, 128.2, 128.3, 128.8, 132.0, 135.6, 156.6, 157.2, 175.9, 194.6. HRMS (ESI+): m/z [M + H]+ calcd for C20H29N2O7: 409.1969; found: 409.1967.