Synthesis 2019; 51(08): 1753-1769
DOI: 10.1055/s-0037-1612254
short review
© Georg Thieme Verlag Stuttgart · New York

Halonium-Induced Polyene Cyclizations

Agathe C. A. D’Hollander
,
Laure Peilleron
,
Tatyana D. Grayfer
,
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France   Email: [email protected]
› Author Affiliations
CNRS, ICSN, Labex Lermit (ANR grant ANR-10-LABX-33 under the program Investissements D’Avenir ANR-11-IDEX-0003-01) and University Paris Saclay.
Further Information

Publication History

Received: 18 December 2018

Accepted after revision: 18 January 2019

Publication Date:
20 March 2019 (online)


These authors contributed equally

Abstract

This review covers the methods that chemists have developed to access halogenated polycyclic structures from polyenes, by emulating Nature’s enzymatic machineries. From pioneering studies to the most recent developments, the different strategies, whether based on the use of standard reagents or on the design of specific ones, will be presented. Finally, asymmetric reactions and applications for the total synthesis of natural products will be exposed.

1 Introduction

2 Pioneering Studies

3 Use of Specific Reagents

4 Use of N-Haloamides

5 Asymmetric Reactions

6 Total Synthesis of Halogenated Natural Products

7 Conclusion and Perspectives

 
  • References

  • 1 Stork G, Burgstahler AW. J. Am. Chem. Soc. 1955; 77: 5068
    • 2a Eschenmoser A, Ruzicka L, Jeger O, Arigoni D. Helv. Chim. Acta 1955; 38: 1890
    • 2b Eschenmoser A, Arigoni D. Helv. Chim. Acta 2005; 88: 3011

      For key reviews on polyene cyclizations, see:
    • 3a Johnson WS. Angew. Chem., Int. Ed. Engl. 1976; 15: 9
    • 3b Yoder RA, Johnston JN. Chem. Rev. 2005; 105: 4730
    • 3c Snyder SA, Levinson AM. In Comprehensive Organic Synthesis, 2nd ed., Vol. 3. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 268
    • 3d Baunach M, Franke J, Hertweck C. Angew. Chem. Int. Ed. 2015; 54: 2604
    • 3e Ungarean CN, Southgate EH, Sarlah D. Org. Biomol. Chem. 2016; 14: 5454
    • 3f Barrett AG. M, Ma T.-K, Mies T. Synthesis 2019; 51: 67
    • 4a Faulkner DJ. Tetrahedron 1977; 33: 1421
    • 4b Gribble GW. J. Nat. Prod. 1992; 55: 1353
    • 4c Wang B.-G, Gloer JB, Ji N.-Y, Zhao J.-C. Chem. Rev. 2013; 113: 3632
  • 5 Gribble GW. J. Chem. Educ. 2004; 81: 1441
  • 6 Chung W.-J, Vanderwal CD. Angew. Chem. Int. Ed. 2016; 55: 4396
    • 7a Butler A, Carter-Franklin JN. Nat. Prod. Rep. 2004; 21: 180
    • 7b Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT. Chem. Rev. 2006; 106: 3364
    • 7c Butler A, Moriah S. Nature (London) 2009; 460: 848
    • 7d Agarwal V, Miles ZD, Winter JM, Eustaquio AS, El Gamal AA, Moore BS. Chem. Rev. 2017; 117: 5619
  • 8 Kubanek J, Prusak AC, Snell TW, Giese RA, Hardcastle KI, Fairchild CR, Aalbersberg W, Raventos-Suarez C, Hay ME. Org. Lett. 2005; 7: 5261
    • 9a Braddock DC, Marklew JS, Foote KM, White AJ. P. Chirality 2013; 25: 692
    • 9b Burckle AJ, Gál B, Seidl FJ, Vasilev VH, Burns NZ. J. Am. Chem. Soc. 2017; 139: 13562
  • 10 For other reviews covering some of these aspects, see: Snyder SA, Treitler DS, Brucks AP. Aldrichimica Acta 2011; 44: 27
  • 11 van Tamelen EE, Hessler EJ. Chem. Commun. 1966; 411
  • 12 Nasipuri D, Ray Chaudhuri SR. J. Chem. Soc., Perkin Trans. 1 1975; 262
  • 13 Wolinsky LE, Faulkner DJ. J. Org. Chem. 1976; 41: 597
  • 14 Kato T, Ichinose I, Kumazawa S, Kitahara Y. Bioorg. Chem. 1975; 4: 188
  • 15 Kitahara Y, Kato T, Ichinose I. Chem. Lett. 1976; 283
  • 16 Kato T, Ichinose I. J. Chem. Soc., Perkin Trans. 1 1980; 1051
  • 17 Barluenga J, González JM, Campos PJ, Asensio G. Angew. Chem., Int. Ed. Engl. 1985; 24: 319
  • 18 Barluenga J, González JM, Campos PJ, Asensio G. Angew. Chem., Int. Ed. Engl. 1988; 27: 1546
  • 19 Günther HJ, Jäger V, Skell PS. Tetrahedron Lett. 1977; 18: 2539
  • 20 Barluenga J, Trincado M, Rubio E, González JM. J. Am. Chem. Soc. 2004; 126: 3416
  • 21 Snyder SA, Treitler DS. Angew. Chem. Int. Ed. 2009; 48: 7899
  • 22 Snyder SA, Treitler DS. Org. Synth. 2011; 88: 54
  • 23 Snyder SA, Treitler DS, Brucks AP. J. Am. Chem. Soc. 2010; 132: 14303
  • 24 Marquet A, Jacques J. Tetrahedron Lett. 1959; 1: 24
    • 25a Collado IG, Madero JG, Massanet GM, Luis FR. Tetrahedron Lett. 1990; 31: 563
    • 25b Collado IG, Madero JG, Massanet GM, Luis FR. J. Org. Chem. 1991; 56: 3587
  • 26 Jain TC, Banke CM, McCloskey JE. Tetrahedron 1979; 35: 885
    • 27a Butler A, Walker JV. Chem. Rev. 1993; 93: 1937
    • 27b Latham J, Brandenburger E, Shepherd SA, Menon BR. K, Micklefield J. Chem. Rev. 2018; 118: 232
  • 28 Carter-Franklin JN, Parrish JD, Tschirret-Guth RA, Little RD, Butler A. J. Am. Chem. Soc. 2004; 126: 15060
  • 29 Ascheberg C, Bock J, Buß F, Mück-Lichtenfeld C, Daniluc CG, Bergander K, Dielmann F, Hennecke U. Chem. Eur. J. 2017; 23: 11578
  • 30 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 31 Grayfer TD, Retailleau P, Dodd RH, Dubois J, Cariou K. Org. Lett. 2017; 19: 4766
  • 32 Wall ME, Wani MC, Manikumar G, Taylor H, Hughes TJ, Gaetano K, Gerwick WH, McPhail AT, McPhail DR. J. Nat. Prod. 1989; 52: 1092
  • 33 Peilleron L, Grayfer TD, Dubois J, Dodd RH, Cariou K. Beilstein J. Org. Chem. 2018; 14: 1103
  • 34 Sakakura A, Ukai A, Ishihara K. Nature (London) 2007; 445: 900
  • 35 Sawamura Y, Nakatsuji H, Sakakura A, Ishihara K. Chem. Sci. 2013; 4: 4181
  • 36 Sawamura Y, Nakatsuji H, Akakura M, Sakakura A, Ishihara K. Chirality 2014; 26: 356
  • 37 Recsei C, McErlean CS. P. Aust. J. Chem. 2015; 68: 555
  • 38 Samanta RC, Yamamoto H. Chem. Eur. J. 2015; 21: 11976
  • 39 Arnold AM, Pöthig A, Drees M, Gulder T. J. Am. Chem. Soc. 2018; 140: 4344
  • 40 For general reviews on enantioselective polyene cyclization, see ref. 3e.

    • For recent general reviews on this topic, see:
    • 41a Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
    • 41b Mendoza A, Fananas FJ, Rodriguez F. Curr. Org. Synth. 2013; 10: 384
    • 41c Tan CK, Yeung YY. Chem. Commun. 2013; 49: 7985
    • 41d Cheng YA, Yu WZ, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 2333
    • 41e Chen J, Zhou L. Synthesis 2014; 46: 586
    • 41f Wolstenhulme JR, Gouverneur V. Acc. Chem. Res. 2014; 47: 3560
    • 41g Tan CK, Yu WZ, Yeung YY. Chirality 2014; 26: 328
    • 41h Zheng SQ, Schienebeck CM, Zhang W, Wang HY, Tang WP. Asian J. Org. Chem. 2014; 3: 366
    • 41i Cresswell AJ, Eey ST. C, Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
  • 42 For a highlight specifically on this topic, see: Chen G, Ma S. Angew. Chem. Int. Ed. 2010; 49: 8306
  • 43 For key reviews specifically on this topic, see ref. 41i and: Landry ML, Burns NZ. Acc. Chem. Res. 2018; 51: 1260
  • 44 Sakakura A, Ishihara K. Chem. Rec. 2015; 15: 728
  • 45 Sawamura Y, Ogura Y, Nakatsuji H, Sakakura A, Ishihara K. Chem. Commun. 2016; 52: 6068
  • 46 Samanta RC, Yamamoto H. J. Am. Chem. Soc. 2017; 139: 1460

    • For seminal and recent reviews covering some aspects of this section, see:
    • 47a Faulkner DJ. Pure Appl. Chem. 1976; 48: 25
    • 47b Ardkhean R, Caputo DF. J, Morrow SM, Shi H, Xiong Y, Anderson EA. Chem. Soc. Rev. 2016; 45: 1557 ; see also refs. 3f and 6
  • 48 González AG, Martin JD, Pérez C, Ramirez MA. Tetrahedron Lett. 1976; 17: 137
  • 49 Recsei C, Chan B, McErlean CS. P. J. Org. Chem. 2014; 79: 880
  • 50 Kuniyoshi M, Wahome PG, Miono T, Hashimoto T, Yokoyama M, Shrestha KL, Higa T. J. Nat. Prod. 2005; 68: 1314
  • 51 Baker R, Briner PH, Evans DA. J. Chem. Soc., Chem. Commun. 1978; 410
  • 52 Pettit GR, Herald CL, Allen MS, Von Dreele RB, Vanell LD, Kao JP. Y, Blake W. J. Am. Chem. Soc. 1977; 99: 262
  • 53 Shieh H.-M, Prestwich GD. Tetrahedron Lett. 1982; 23: 4643
    • 54a Hoye TR, Kurth MJ. J. Am. Chem. Soc. 1979; 101: 5065
    • 54b Hoye TR, Caruso AJ, Dellarla FF, Kurth MJ. J. Am. Chem. Soc. 1982; 104: 6704
  • 55 Sims JJ, Lin GH. Y, Wing RM, Fenical W. J. Chem. Soc. Chem. Commun. 1973; 470
  • 56 Yamamura Y, Hirata Y. Bull. Chem. Soc. Jpn. 1971; 44: 2560
  • 57 Yamaguchi Y, Uyehara T, Kato T. Tetrahedron Lett. 1985; 26: 343
  • 58 Fukuzawa A, Miyamoto M, Kumagai Y, Abiko A, Takaya Y, Masamune T. Chem. Lett. 1985; 1259
  • 59 Howard BM, Fenical W. Phytochemistry 1980; 19: 2774
  • 60 Fujiwara S, Takeda K, Uyehara K, Kato T. Chem. Lett. 1986; 1763
    • 61a Hogberg H.-E, Thomson RH, King TJ. J. Chem. Soc., Perkin Trans. 1 1976; 1696
    • 61b McConnel OJ, Hughes PA, Targett NM. Phytochemistry 1982; 21: 2139
  • 62 Tanaka A, Sato M, Yamashita K. Agric. Biol. Chem. 1990; 54: 121
  • 63 Tanaka A, Oritani T. Biosci., Biotechnol., Biochem. 1995; 59: 516
  • 64 Treitler DS, Li Z, Krystal M, Meanwell NA, Snyder SA. Bioorg. Med. Chem. Lett. 2013; 23: 2192
    • 65a Talpir R, Rudi A, Kashman Y, Loya Y, Hizi A. Tetrahedron 1994; 50: 4179
    • 65b Loya S, Bakhanaskvili M, Kashman Y, Hizi A. Arch. Biochem. Biophys. 1995; 316: 789
  • 66 Lane AL, Mular L, Drenkard EJ, Shearer TL, Engel S, Fredericq S, Fairchild CR, Prudhomme J, Le Roch K, Hay ME, Aalbersberg W, Kubanek J. Tetrahedron 2010; 66: 455
  • 67 Shen M, Kretschmer M, Brill ZG, Snyder SA. Org. Lett. 2016; 18: 5018
  • 68 Lin H, Pochapsky SS, Krauss IJ. Org. Lett. 2011; 13: 1222
    • 69a Kubanek J, Prusak AC, Snell TW, Giese RA, Fairchild CR, Aalbersberg W, Hay MH. J. Nat. Prod. 2006; 69: 731
    • 69b Lane AL, Stout EP, Lin A.-S, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Hay ME, Aalbersberg W, Kubanek J. J. Org. Chem. 2009; 74: 2736
    • 69c Lin AS, Stout EP, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Aalbersberg W, Hay ME, Kubanek J. J. Nat. Prod. 2010; 73: 275 ; see also ref. 8
  • 70 Gagné proposed an elegant solution by the mean of an enantioselective Pt(II)-catalyzed cyclization of polyene that is terminated by a fluoro-demetalation with XeF2, see: Cochrane NA, Nguyen H, Gagné MR. J. Am. Chem. Soc. 2013; 135: 628