Synthesis 2019; 51(22): 4291-4295
DOI: 10.1055/s-0037-1611919
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Optically Active Neolignans Ligraminol D and E

Ganesh S. Ghotekar
a  Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India   Email: m.muthukrishnan@ncl.res.in
b  Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
M. Mujahid
c  P. G. Department of Chemistry, Shri Shivaji College of Arts, Commerce & Science, Akola 444001, India
,
M. Muthukrishnan
a  Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India   Email: m.muthukrishnan@ncl.res.in
b  Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
› Author Affiliations
Financial support from the CSIR-New Delhi (HCP0008) is gratefully acknowledged.
Further Information

Publication History

Received: 25 June 2019

Accepted after revision: 08 August 2019

Publication Date:
26 August 2019 (eFirst)

Abstract

Efficient syntheses of optically active neolignans ligraminol D and E were achieved in four simple steps starting from easily available chiral benzyl glycidyl ethers. The products were obtained in good overall yields and high enantioselectivities. The protocol might also be useful in the synthesis of other ligraminols or related neolignans.

Supporting Information

 
  • References

    • 1a Teponno RB, Kusari S, Spiteller M. Nat. Prod. Rep. 2016; 33: 1044
    • 1b Apers S, Vlietinck A, Pieters L. Phytochem. Rev. 2003; 2: 201
    • 1c Feng X.-L, Yu Y, Qin D.-P, Gao H, Yao X.-S. RSC Adv. 2015; 5: 5173
    • 2a Lin L.-C, Shen C.-C, Shen Y.-C, Tsai T.-H. J. Nat. Prod. 2006; 69: 842
    • 2b Charlton JL. J. Nat. Prod. 1998; 61: 1447
    • 2c Lee A.-L, Ley SV. Org. Biomol. Chem. 2003; 1: 3957
    • 2d Amaral M, de Sousa FS, Silva TA. C, Junior AJ. G, Taniwaki NN, Johns DM, Lago JH. G, Anderson EA, Tempone AG. Sci. Rep. 2019; 9: 6114
    • 2e Jiang R.-W, Zhou J.-R, Hon P.-M, Li S.-L, Zhou Y, Li L.-L, Ye W.-C, Xu H.-X, Shaw P.-C, But PP.-H. J. Nat. Prod. 2007; 70: 283
    • 3a Ward RS. Chem. Soc. Rev. 1982; 11: 75
    • 3b Sefkow M. Synthesis 2003; 2595
    • 3c Nagaraju M, Chandra R, Gawali BB. Synlett 2012; 23: 1485
    • 3d Xia Y, Wang W, Guo Y, Li J. Turk. J. Chem. 2010; 34: 375
    • 3e Reddy PR, Das B. RSC Adv. 2014; 4: 7432
    • 3f Rye CE, Barker D. Eur. J. Med. Chem. 2013; 60: 240
  • 4 Kim KH, Kim HK, Choi SU, Moon E, Kim SY, Lee KR. J. Nat. Prod. 2011; 74: 2187
  • 5 Gangar M, Goyal S, Hathiram V, Ramdas WA, Rao VK, Nair VA. ChemistrySelect 2017; 2: 257
    • 7a Ghotekar GS, Mujahid M, Muthukrishnan M. ACS Omega 2019; 4: 1322
    • 7b Mujahid M, Mujumdar P, Sasikumar M, Deshmukh SP, Muthukrishnan M. Tetrahedron: Asymmetry 2017; 28: 983
    • 7c Mujahid M, Jambu S, Viswandh N, Sasikumar M, Kunte SS, Muthukrishnan M. New J. Chem. 2017; 41: 824
    • 7d Viswanadh N, Mujumdar P, Sasikumar M, Kunte SS, Muthukrishnan M. Tetrahedron Lett. 2016; 57: 861
    • 8a Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Science 1997; 277: 936
    • 8b Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 1307