Synthesis 2019; 51(22): 4137-4146
DOI: 10.1055/s-0037-1611918
short review
© Georg Thieme Verlag Stuttgart · New York

Migratory Insertion Strategies for Dearomatization

,
Mark Lautens
University of Toronto, Department of Chemistry, 80 St. George St., Toronto ON, M5S 3H6, Canada   Email: mark.lautens@utoronto.ca
› Author Affiliations
The authors thank the Natural Sciences and Engineering Research Council (NSERC), the University of Toronto, Alphora Research Inc. and Kennarshore Inc. for financial support. N.Z. thanks the province of Ontario for the Ontario Graduate Scholarship.
Further Information

Publication History

Received: 31 July 2019

Accepted after revision: 09 August 2019

Publication Date:
26 August 2019 (eFirst)

Dedicated to the memory of Prof. Dieter Enders

Abstract

Development of strategies for molecule functionalization by dearomatization has surged in the last two decades. The benefits of overcoming the resonance stabilization energy outweigh the cost; diverse compounds could be accessed in a short number of steps. One approach that has been of interest in recent years is the dearomatization of indoles and other (hetero)aromatic compounds by migratory insertion. The chiral σ-bond palladium intermediate could be reduced or trapped by a second functionalization. In this short review we will summarize the recently discovered reactions from our group and others in this field of metal-catalyzed dearomatizations by migratory insertion.

1 Introduction

2 Monofunctionalizations: Heck and Reductive Heck Reactions

2.1 N-Tethered Heterocycles

2.2 Non-N-tethered Heterocycles

2.3 Non-heterocycles

3 Dearomative Difunctionalizations: Interrupted Heck Reaction

3.1 N-Tethered Heterocycles

3.2 Non-N-tethered Heterocycles

4 Conclusion

 
  • References

  • 1 Wu WT, Zhang L, You SL. Chem. Soc. Rev. 2016; 45: 1570
  • 2 Roche SP, Youte Tendoung J.-J, Tréguier B. Tetrahedron 2015; 71: 3549
  • 3 Wertjes WC, Southgate EH, Sarlah D. Chem. Soc. Rev. 2018; 47: 7996
  • 4 Liebov BK, Harman WD. Chem. Rev. 2017; 117: 13721
    • 5a Chen JB, Jia YX. Org. Biomol. Chem. 2017; 15: 3550
    • 5b Zheng C, You S.-L. Chem 2016; 1: 830
    • 5c Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
  • 6 Remy R, Bochet CG. Chem. Rev. 2016; 116: 9816
  • 7 Zhao L, Li Z, Chang L, Xu J, Yao H, Wu X. Org. Lett. 2012; 14: 2066
  • 8 Brown S, Clarkson S, Grigg R, Thomas WA, Sridharan V, Wilson DM. Tetrahedron 2001; 57: 1347
    • 9a Shen C, Liu RR, Fan RJ, Li YL, Xu TF, Gao JR, Jia YX. J. Am. Chem. Soc. 2015; 137: 4936
    • 9b Liang R.-X, Yang R.-Z, Liu R.-R, Jia Y.-X. Org. Chem. Front. 2018; 5: 1840
  • 10 Douki K, Ono H, Taniguchi T, Shimokawa J, Kitamura M, Fukuyama T. J. Am. Chem. Soc. 2016; 138: 14578
  • 11 Li X, Zhou B, Yang RZ, Yang FM, Liang RX, Liu RR, Jia YX. J. Am. Chem. Soc. 2018; 140: 13945
  • 12 Yang P, You SL. Org. Lett. 2018; 20: 7684
  • 13 Qin X, Lee MW. Y, Zhou JS. Angew. Chem. Int. Ed. 2017; 56: 12723
  • 14 Fritschi H, Leutenegger U, Pfaltz A. Angew. Chem. Int. Ed. 1986; 25: 1005
  • 15 Liang RX, Xu DY, Yang FM, Jia YX. Chem. Commun. 2019; 55: 7711
  • 16 Wei F, Wei L, Zhou L, Tung C.-H, Ma Y, Xu Z. Asian J. Org. Chem. 2016; 5: 971
  • 17 Liu RR, Xu Y, Liang RX, Xiang B, Xie HJ, Gao JR, Jia YX. Org. Biomol. Chem. 2017; 15: 2711
  • 18 Douki K, Shimokawa J, Kitamura M. Org. Biomol. Chem. 2019; 17: 1727
  • 19 Schleyer P. vR, Pühlhofer F. Org. Lett. 2002; 4: 2873
  • 20 Zuo Z, Wang H, Diao Y, Ge Y, Liu J, Luan X. ACS Catal. 2018; 8: 11029
  • 21 Liao X, Wang D, Huang Y, Yang Y, You J. Org. Lett. 2019; 21: 1152
  • 22 Zhang W, Pugh G. Tetrahedron Lett. 1999; 40: 7591
  • 23 Petrone DA, Yen A, Zeidan N, Lautens M. Org. Lett. 2015; 17: 4838
    • 24a Petrone DA, Kondo M, Zeidan N, Lautens M. Chem. Eur. J. 2016; 22: 5684
    • 24b Chen S, Wu XX, Wang J, Hao XH, Xia Y, Shen Y, Jing H, Liang YM. Org. Lett. 2016; 18: 4016
    • 24c Wang Y, Liu R, Gao J, Jia Y. Chin. J. Org. Chem. 2017; 37: 691
    • 24d Liu RR, Xu TF, Wang YG, Xiang B, Gao JR, Jia YX. Chem. Commun. 2016; 52: 13664
  • 25 Liu RR, Wang YG, Li YL, Huang BB, Liang RX, Jia YX. Angew. Chem. Int. Ed. 2017; 56: 7475
  • 26 Shen C, Zeidan N, Wu Q, Breuers CB. J, Liu R.-R, Jia Y.-X, Lautens M. Chem. Sci. 2019; 10: 3118
    • 27a Zeidan N, Beisel T, Ross R, Lautens M. Org. Lett. 2018; 20: 7332
    • 27b Weng J.-Q, Xing L.-L, Hou W.-R, Liang R.-X, Jia Y.-X. Org. Chem. Front. 2019; 6: 1577
    • 27c Liang R.-X, Wang K, Wu Q, Sheng W.-J, Jia Y.-X. Organometallics 2019; DOI: in press; DOI 10.1021/acs.organomet.9b00112.
    • 27d Wang H, Wu X.-F. Org. Lett. 2019; 21: 5264
  • 28 Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
  • 29 Marchese AD, Lind F, Mahon AE, Yoon H, Lautens M. Angew. Chem. Int. Ed. 2019; 58: 5095