Synthesis 2019; 51(19): 3588-3599
DOI: 10.1055/s-0037-1611892
short review
© Georg Thieme Verlag Stuttgart · New York

O-Annulation Leading to Five-, Six-, and Seven-Membered Cyclic Diaryl Ethers Involving C–H Cleavage

Alexandre Rossignon
a  Department of Chemistry, University of Namur, Rue de Bruxelles 61, Namur 5000, Belgium
b  School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, UK   Email: [email protected]
,
b  School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, UK   Email: [email protected]
› Author Affiliations
D. B. thanks the EU through the MC-RISE scheme (INFUSION), and the School of Chemistry @Cardiff University for the financial support.
Further Information

Publication History

Received: 21 April 2019

Accepted after revision: 26 June 2019

Publication Date:
31 July 2019 (online)


Abstract

Cyclic diaryl ethers are present in multiple natural compounds, organic pollutants as well as in π-conjugated organic molecular materials. This short review aims at overviewing the main synthetic advances in the O-annulation methods for preparing five-, six-, and seven-membered rings through C–H cleavage.

1 Introduction

2 Five-Membered Rings: The Dibenzofuran (DBF) Motif

2.1 Palladium-Catalysed C–H Activation

2.2 Copper-Catalysed C–H Activation

2.3 Non-CH Activation Oxidant-Mediated Cyclisation

2.4 Light-Mediated Cyclisation

2.5 Acid-catalysed C–O Cleavage/C–O Formation

3 Six-Membered Rings: DBX, PXX, Xanthone, and Their Derivatives

3.1 Dibenzoxanthene (DBX)

3.2 Peri-Xanthenoxanthene (PXX)

3.3 Xanthones

3.4 Miscellaneous

4 Seven-Membered Rings: Cularine

5 Conclusion

 
  • References

    • 1a Nicolaou KC, Boddy CN, Bräse S, Winssinger N. Angew. Chem. Int. Ed. 1999; 38: 2096
    • 1b Russo A, Caggia S, Piovano M, Garbarino J, Cardile V. Chem. Biol. Interact. 2012; 195: 1
    • 1c Qu J, Xie C, Guo H, Yu W, Lou H. Phytochemistry 2007; 68: 1767
  • 2 Teran T, Lamon L, Marcomini A. Atmos. Pollut. Res. 2012; 3: 466
    • 3a Stoessel P, Buesing A, Heil H. US Patent 2010/0013381 A1, 2010
    • 3b Kobayashi N, Sasaki M, Ohe T. US Patent 8 399 288 B2, 2013
    • 3c For the p-type semiconductor properties of PXX, see: Kobayashi N, Sasaki M, Nomoto K. Chem. Mater. 2009; 21: 552
  • 4 Dou L, Chen C.-C, Yoshimura K, Ohya K, Chang WH, Gao J, Liu Y, Richard E, Yang Y. Macromolecules 2013; 46: 3384
    • 5a Yang L, Li M, Song J, Zhou Y, Bo Z, Wang H. Adv. Funct. Mater. 2018; 28: 1705927
    • 5b Li M, Guo Y, Zhou Y, Zhang J, Yang L, Zhang L, Song J, Bo Z, Wang H. ACS Appl. Mater. Interfaces 2018; 10: 13931
    • 5c Zhou Y, Li M, Song J, Liu Y, Zhang J, Yang L, Zhang Z, Bo Z, Wang H. Nano Energy 2018; 45: 10
  • 6 Lee CW, Seo JA, Gong MS, Lee JY. Chem. Eur. J. 2013; 19: 1194
  • 7 Wang Y, Qiu S, Xie S, Zhou L, Hong Y, Chang J, Wu J, Zeng Z. J. Am. Chem. Soc. 2019; 141: 2169
  • 8 Aranyos A, Old DW, Kiyomori A, Wolfe JP, Sadighi JP, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 4369
  • 9 Ullmann F, Sponagel P. Ber. Dtsch. Chem. Ges. 1905; 38: 2211
    • 10a Chan DM. T, Monaco KL, Wang RP, Winters MP. Tetrahedron Lett. 1998; 39: 2933
    • 10b Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
    • 10c Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
  • 11 Zhu JP. Synlett 1997; 133
  • 12 Yi Z, Okuda H, Koyama Y, Seto R, Uchida S, Sogawa H, Kuwata S, Takata T. Chem. Commun. 2015; 51: 10423
  • 13 Pigge F, Coniglio J. Curr. Org. Chem. 2001; 5: 757
  • 14 Jalalian N, Ishikawa EE, Silva LF. Jr, Olofsson B. Org. Lett. 2011; 13: 1552
  • 15 Liu Z, Larock RC. Org. Lett. 2004; 6: 99
  • 16 Elbert SM, Reinschmidt M, Baumgärtner K, Rominger F, Mastalerz M. Eur. J. Org. Chem. 2018; 532
    • 17a Frlan R, Kikelj D. Synthesis 2006; 2271
    • 17b Pitsinos EN, Vidali VP, Couladouros EA. Eur. J. Org. Chem. 2011; 1207
    • 17c Mandal S, Mandal S, Ghosh SK, Sar P, Ghosh A, Saha R, Saha B. RSC Adv. 2016; 6: 69605
    • 17d Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
  • 18 Xiao B, Gong T.-J, Liu Z.-J, Liu J.-H, Luo D.-F, Xu J, Liu L. J. Am. Chem. Soc. 2011; 133: 9250
  • 19 Wei Y, Yoshikai N. Org. Lett. 2011; 13: 5504
  • 20 Schmidt B, Riemer M. J. Heterocycl. Chem. 2017; 54: 1287
  • 21 Stadlbauer W, Schmut O, Kappe T. Monatsh. Chem. 1980; 111: 1005
  • 22 Chen Y.-L, Chung C.-H, Chen IL, Chen P.-H, Jeng H.-Y. Bioorg. Med. Chem. 2002; 10: 2705
  • 23 Zhao J, Wang Y, He Y, Liu L, Zhu Q. Org. Lett. 2012; 14: 1078
  • 24 Zhao J, Wang Y, Zhu Q. Synthesis 2012; 44: 1551
  • 25 Zhao J, Zhang Q, Liu L, He Y, Li J, Li J, Zhu Q. Org. Lett. 2012; 14: 5362
  • 26 Makino K, Harada K, Kubo M, Hioki H, Fukuyama Y. Nat. Prod. Commun. 2013; 8: 915
  • 27 Hayashi N, Kanda A, Kamoto T, Higuchi H, Akita T. Heterocycles 2009; 79: 865
  • 28 Aebisher D, Brzostowska EM, Mahendran A, Greer A. J. Org. Chem. 2007; 72: 2951
  • 29 Hirano M, Yakabe S, Chikamori HH, Clark J, Morimoto T. J. Chem. Res., Synop. 1998; 770
  • 30 Obermeyer AC, Jarman JB, Francis MB. J. Am. Chem. Soc. 2014; 136: 9572
    • 31a Pan G, Li X, Zhao L, Wu M, Su C, Li X, Zhang Y, Yu P, Teng Y, Lu K. Eur. J. Med. Chem. 2017; 138: 577
    • 31b Pan G, Ma Y, Yang K, Zhao X, Yang H, Yao Q, Lu K, Zhu T, Yu P. Tetrahedron Lett. 2015; 56: 4472
    • 32a Nayak MK, Wan P. Photochem. Photobiol. Sci. 2008; 7: 1544
    • 32b Basarić N, Došlić N, Ivković J, Wang Y.-H, Veljković J, Mlinarić-Majerski K, Wan P. J. Org. Chem. 2013; 78: 1811
    • 33a Högberg H.-E, Komlos P, Rämsby S, Stjernström NE, Enzell CR, Reid WW, Yanaihara N, Yanaihara C. Acta Chem. Scand. 1979; 33b: 271
    • 33b Cui Y, Ngo HL, Lin W. Inorg. Chem. 2002; 41: 1033
    • 33c Zhang C, Li T, Wang L, Rao Y. Org. Chem. Front. 2017; 4: 386
  • 34 Nakanishi K, Fukatsu D, Takaishi K, Tsuji T, Uenaka K, Kuramochi K, Kawabata T, Tsubaki K. J. Am. Chem. Soc. 2014; 136: 7101
    • 35a Miletić T, Fermi A, Orfanos I, Avramopoulos A, De Leo F, Demitri N, Bergamini G, Ceroni P, Papadopoulos MG, Couris S, Bonifazi D. Chem. Eur. J. 2017; 23: 2363
    • 35b Papadakis I, Bouza Z, Stathis A, Orfanos I, Couris S, Miletić T, Bonifazi D. J. Phys. Chem. A 2018; 122: 5142
    • 36a Petrocelli FP, Klein MT. Ind. Eng. Chem. Prod. Res. Dev. 1985; 24: 635
    • 36b Arienti A, Bigi F, Maggi R, Moggi P, Rastelli M, Sartori G, Trere A. J. Chem. Soc., Perkin Trans. 1 1997; 1391
    • 36c Ogata T, Okamoto I, Doi H, Kotani E, Takeya T. Tetrahedron Lett. 2003; 44: 2041
  • 37 Kong H, Yang S, Gao H, Timmer A, Hill JP, Díaz Arado O, Mönig H, Huang X, Tang Q, Ji Q, Liu W, Fuchs H. J. Am. Chem. Soc. 2017; 139: 3669
  • 38 Shyam Sundar M, Bedekar AV. Org. Lett. 2015; 17: 5808
  • 39 Rieche A, Kirschke K, Schulz M. Justus Liebigs Ann. Chem. 1968; 711: 103
  • 40 Schneider HP, Streich E, Schurr K, Pauls N, Winter W, Rieker A. Chem. Ber. 1984; 117: 2660
  • 41 Tan D.-M, Li H.-H, Wang B, Liu H.-B, Xu Z.-L. Chin. J. Chem. 2001; 19: 91
    • 42a Wang X.-Z, Yang H.-H, Li W, Han B.-J, Liu Y.-J. New J. Chem. 2016; 40: 5255
    • 42b Wang X.-Z, Yao J.-H, Jiang G.-B, Wang J, Huang H.-L, Liu Y.-J. Spectrochim. Acta, Part A 2014; 133: 559
  • 43 Hu G, Holmes D, Gendhar BF, Wulff WD. J. Am. Chem. Soc. 2009; 131: 14355
  • 44 Bünzly H, Decker H. Ber. Dtsch. Chem. Ges. 1905; 38: 3268
  • 45 Pummerer R, Frankfurter F. Ber. Dtsch. Chem. Ges. 1914; 47: 1472
  • 46 Takehiro A, Norihito K, Toshio N, Tamotsu I. Bull. Chem. Soc. Jpn. 2001; 74: 53
  • 47 Wetherby AE. Jr, Benson SD, Weinert CS. Inorg. Chim. Acta 2007; 360: 1977
  • 48 Lv N, Xie M, Gu W, Ruan H, Qiu S, Zhou C, Cui Z. Org. Lett. 2013; 15: 2382
  • 49 Stassen D, Demitri N, Bonifazi D. Angew. Chem. Int. Ed. 2016; 55: 5947
  • 50 Song C, Swager TM. Macromolecules 2009; 42: 1472
  • 51 Kamei T, Uryu M, Shimada T. Org. Lett. 2017; 19: 2714
  • 52 Berezin A, Biot N, Battisti T, Bonifazi D. Angew. Chem. Int. Ed. 2018; 57: 8942
    • 53a Sciutto A, Fermi A, Folli A, Battisti T, Beames J, Murphy D, Bonifazi D. Chem. Eur. J. 2017; 24: 4382
    • 53b Sciutto A, Berezin A, Lo Cicero M, Miletic T, Stopin A, Bonifazi D. J. Org. Chem. 2018; 83: 13787
  • 54 Pinto MM. M, Sousa ME, Nascimento MS. J. Curr. Med. Chem. 2005; 12: 2517
  • 55 Fromentin Y, Grellier P, Wansi JD, Lallemand M.-C, Buisson D. Org. Lett. 2012; 14: 5054
  • 56 Kraus G, Mengwasser J. Molecules 2009; 14: 2857
  • 57 Tisdale EJ, Kochman DA, Theodorakis EA. Tetrahedron Lett. 2003; 44: 3281
    • 58a Atkinson JE, Lewis JR. J. Chem. Soc., Chem. Commun. 1967; 803
    • 58b Graham R, Lewis JR. J. Chem. Soc., Perkin Trans. 1 1978; 876
  • 59 Ellis RC, Whalley WB, Ball K. J. Chem. Soc., Chem. Commun. 1967; 803
  • 60 Atkinson JE, Lewis JR. J. Chem. Soc. C 1969; 281
  • 61 Shuichi U, Kazu K. Bull. Chem. Soc. Jpn. 1977; 50: 193
  • 62 Fuse S, Matsumura K, Johmoto K, Uekusa H, Tanaka H, Hirose T, Sunazuka T, Ōmura S, Takahashi T. Chem. Eur. J. 2016; 22: 18450
  • 63 Suzuki Y, Fukuta Y, Ota S, Kamiya M, Sato M. J. Org. Chem. 2011; 76: 3960
  • 64 Ooyama Y, Okamoto T, Yamaguchi T, Suzuki T, Hayashi A, Yoshida K. Chem. Eur. J. 2006; 12: 7827
  • 65 Cadogan JI. G, Hutchison HS, McNab H. J. Chem. Soc., Perkin Trans. 1 1991; 385
  • 66 Karlsson KM, Jiang X, Eriksson SK, Gabrielsson E, Rensmo H, Hagfeldt A, Sun L. Chem. Eur. J. 2011; 17: 6415
  • 67 Bag SS, Ghorai S, Jana S, Mukherjee C. RSC Adv. 2013; 3: 5374
  • 68 Bang ZN, Komissarov VN, Sayapin YA, Tkachev VV, Shilov GV, Aldoshin SM, Minkin VI. Russ. J. Org. Chem. 2009; 45: 442
  • 69 Lesh FD, Lord RL, Heeg MJ, Schlegel HB, Verani CN. Eur. J. Inorg. Chem. 2012; 463
  • 70 Jackson AH, Stewart GW, Charnock GA, Martin JA. J. Chem. Soc., Perkin Trans. 1 1974; 1911
  • 71 De Lera AR, Saá JM, Suau R, Castedo L. J. Heterocycl. Chem. 1987; 24: 95
  • 72 Rodrigues JA. R, Abramovitch RA, de Sousa JD. F, Leiva GC. J. Org. Chem. 2004; 69: 2920