Synthesis 2019; 51(23): 4368-4373
DOI: 10.1055/s-0037-1611885
special topic
© Georg Thieme Verlag Stuttgart · New York

Radiohalogenation of Organic Compounds: Practical Considerations and Challenges for Molecular Imaging

Financial support from the University of Glasgow is gratefully acknowledged.
Further Information

Publication History

Received: 29 May 2019

Accepted after revision: 18 June 2019

Publication Date:
03 July 2019 (eFirst)

Published as part of the Special Topic Halogenation methods (with a view towards radioimaging applications)

Abstract

In the last few decades, advances in molecular imaging technologies have had a major impact on many aspects of healthcare. In particular, radiohalogenated compounds have been used for non-invasive visualization of human anatomy, for the diagnosis of disease and in drug development programs. As a consequence of these advances, a range of novel synthetic radiochemical methods have been reported that allow more effective and efficient radiohalogenation from a broader range of precursors. In developing new radiochemical methods, special requirements are required to optimize the incorporation of highly radioactive, short-lived, isotopically labelled reagents. This article highlights the key practical considerations and challenges encountered when utilizing the most commonly used radiohalogens in nuclear medicine.

1 Introduction

2 Synthetic Challenges for Radiohalogenation

2.1 Radiofluorination

2.2 Radioiodination

3 Conclusions and Future Outlook

 
  • References


    • For reviews, see:
    • 1a Adam MJ, Wilbur DS. Chem. Soc. Rev. 2005; 34: 153
    • 1b Pimlott SL, Sutherland A. Chem. Soc. Rev. 2011; 40: 149
  • 2 Ametamey SM, Honer M, Schubiger PA. Chem. Rev. 2008; 108: 1501
    • 3a Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O’Shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC. Clin. Cancer Res. 2005; 11: 2785
    • 3b Ido T, Wan C.-N, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE. J. Labelled Compd. Radiopharm. 1978; 14: 175
    • 4a McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, Padovani A, Giubbini R, Bonuccelli U, Volterrani D, Holmes C, Kemp P, Tabet N, Meyer I, Reininger C. Lancet Neurol. 2007; 6: 305
    • 4b Bajaj N, Hauser RA, Grachev ID. J. Neurol., Neurosurg. Psychiatry 2013; 84: 1288

      For example, see:
    • 5a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 5b O’Hagan D. J. Fluorine Chem. 2010; 131: 1071
    • 5c Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 6a Preshlock S, Tredwell M, Gouverneur V. Chem. Rev. 2016; 116: 719
    • 6b Wilson TC, Cailly T, Gouverneur V. Chem. Soc. Rev. 2018; 47: 6990
  • 7 Seevers RH, Counsell RE. Chem. Rev. 1982; 82: 575

    • For examples of some recently developed radioiodination methods, see:
    • 8a Cant AA, Champion S, Bhalla R, Pimlott SL, Sutherland A. Angew. Chem. Int. Ed. 2013; 52: 7829
    • 8b Zhang P, Zhuang R, Guo Z, Su X, Chen X, Zhang X. Chem. Eur. J. 2016; 22: 16783
    • 8c Wilson TC, McSweeney G, Preshlock S, Verhoog S, Tredwell M, Cailly T, Gouverneur V. Chem. Commun. 2016; 52: 13277
    • 8d Dubost E, Babin V, Benoist F, Hébert A, Barbey P, Chollet C, Bouillon J.-P, Manrique A, Pieters G, Fabis F, Cailly T. Org. Lett. 2018; 20: 6302
    • 8e Molloy JJ, O’Rourke KM, Frias CP, Sloan NL, West MJ, Pimlott SL, Sutherland A, Watson AJ. B. Org. Lett. 2019; 21: 2488
  • 9 Webster S, O’Rourke KM, Fletcher C, Pimlott SL, Sutherland A, Lee A.-L. Chem. Eur. J. 2018; 24: 937
  • 10 Ruth TJ, Wolf AP. Radiochim. Acta 1979; 26: 21
  • 11 Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
  • 12 Cai L, Lu S, Pike VW. Eur. J. Org. Chem. 2008; 2853
  • 13 Blair A, Zmuda F, Malviya G, Tavares AA. S, Tamagnan GD, Chalmers AJ, Dewar D, Pimlott SL, Sutherland A. Chem. Sci. 2015; 6: 4772
  • 14 Aerts J, Voccia S, Lemaire C, Giacomelli F, Goblet D, Thonon D, Plenevaux A, Warnock G, Luxen A. Tetrahedron Lett. 2010; 51: 64
  • 15 Lemaire CF, Aerts JJ, Voccia S, Libert LC, Mercier F, Goblet D, Plenevaux AR, Luxen AJ. Angew. Chem. Int. Ed. 2010; 49: 3161
  • 16 Machulla H.-J, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. J. Radioanal. Nucl. Chem. 2000; 243: 843
  • 17 Dolci L, Dolle F, Valette H, Vaufrey F, Fuseau C, Bottlaender M, Crouzel C. Bioorg. Med. Chem. 1999; 7: 467
  • 18 Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V. Angew. Chem. Int. Ed. 2010; 49: 6821
  • 19 Stenhagen IS. R, Kirjavainen AK, Forsback SJ, Jørgensen CG, Robins EG, Luthra SK, Solin O, Gouverneur V. Chem. Commun. 2013; 49: 1386
  • 20 Jacobson O, Kiesewetter DO, Chen X. Bioconjugate Chem. 2015; 26: 1
  • 21 Braghirolli AM. S, Waissmann W, da Silva JB, dos Santos GR. Appl. Radiat. Isot. 2014; 90: 138
  • 22 Adam MJ, Ponce YZ, Berry JM. J. Labelled Compd. Radiopharm. 1990; 28: 1065
  • 23 Samnick S, Bader JB, Müller M, Chapot C, Richter S, Schaefer A, Sax B, Kirsch C.-M. Nucl. Med. Commun. 1999; 20: 537
  • 24 Cant AA, Bhalla R, Pimlott SL, Sutherland A. Chem. Commun. 2012; 48: 3993
    • 25a Elander N, Jones JR, Lu S.-Y, Stone-Elander S. Chem. Soc. Rev. 2000; 29: 239
    • 25b Stone-Elander S, Elander N. J. Labelled Compd. Radiopharm. 2002; 45: 715

      For example, see:
    • 27a Brown LJ, Bouvet DR, Champion S, Gibson AM, Hu Y, Jackson A, Khan I, Ma N, Millot N, Wadsworth H, Brown RC. D. Angew. Chem. Int. Ed. 2007; 46: 941
    • 27b Tang G, Wang M, Tang X, Luo L, Gan M. Nucl. Med. Biol. 2003; 30: 509
    • 27c Sloan NL, Luthra SK, McRobbie G, Pimlott SL, Sutherland A. Chem. Commun. 2017; 53: 11008

      For example, see:
    • 28a Deng H, Cobb SL, Gee AD, Lockhart A, Martarello L, McGlinchey RP, O’Hagan D, Onega M. Chem. Commun. 2006; 652
    • 28b Zhang Q, Dall’Angelo S, Fleming IN, Schweiger LF, Zanda M, O’Hagan D. Chem. Eur. J. 2016; 22: 10998
    • 28c Lowe PT, Dall’Angelo S, Devine A, Zanda M, O’Hagan D. ChemBioChem 2018; 19: 1969
  • 29 Reilly SW, Makvandi M, Xu K, Mach RH. Org. Lett. 2018; 20: 1752