Synthesis 2019; 51(14): 2809-2820
DOI: 10.1055/s-0037-1611776
short review
© Georg Thieme Verlag Stuttgart · New York

Nucleophilic Trifluoromethylation Reactions Involving Copper(I) Species: From Organometallic Insights to Scope

Ángel L. Mudarra
a  Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans, 16, 43007 Tarragona, Spain   Email: mperez@iciq.es
b  Department de Química Analítica I Química Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
,
Sara Martínez de Salinas
a  Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans, 16, 43007 Tarragona, Spain   Email: mperez@iciq.es
,
a  Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans, 16, 43007 Tarragona, Spain   Email: mperez@iciq.es
› Author Affiliations
We thank the CERCA Programme/Generalitat de Catalunya and the Spanish Ministry of Economy, Industry and Competitiveness (MINECO: CTQ2016-79942-P, AIE/FEDER, EU) for the financial support. A. L. M. thanks La Caixa-Severo Ochoa programme for a predoctoral grant.
Further Information

Publication History

Received: 04 February 2019

Accepted after revision: 13 March 2019

Publication Date:
28 March 2019 (eFirst)

§These authors contributed equally to this work.

Published as part of the Bürgenstock Special Section 2018 Future Stars in Organic Chemistry

Abstract

Over the last decades, trifluoromethyl copper(I) complexes have played a key role as reactive species in C–CF3 bond-forming reactions. This Short Review not only covers selected examples of relevant copper-mediated or catalyzed nucleophilic trifluoromethylation reactions, which is one of the most active fields in organic synthesis, but also provides a comprehensive picture of the real behavior of these copper species, including ubiquitous cuprates, in the reaction media.

1 Introduction

2 Historical Perspective of the Identification of Relevant Trifluoro-

methyl Copper(I) Species

3 In Situ Generation of Active Trifluoromethyl Copper(I) Species

4 Well-Defined Active Trifluoromethyl Copper(I) Complexes

5 Recent Advances on the Performance of Trifluoromethylation

Protocols

6 Conclusions

 
  • References

    • 1a Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
    • 1b Mueller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1d Ni C, Hu J. Chem. Soc. Rev. 2016; 45: 5441
    • 1e Orsi DL, Altman RA. Chem. Commun. 2017; 7168

      For selected recent reviews on trifluoromethylation, see:
    • 2a Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 2b Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 2c Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 2d García-Monforte MA, Martínez-Salvador S, Menjón B. Eur. J. Inorg. Chem. 2012; 4945
    • 2e Ye Y, Sanford MS. Synlett 2012; 23: 2005
    • 2f Wu X.-F, Neumann H, Beller M. Chem. Asian J. 2012; 7: 1744
    • 2g Wang H, Vicic DA. Synlett 2013; 24: 1887
    • 2h Barata-Vallejo S, Lantaño B, Postigo A. Chem. Eur. J. 2014; 20: 16806
    • 2i Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 2j Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 2k Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 2l Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 3a McLoughlin VC. R, Thrower J. U. S. Patent 3408411, 1968
    • 3b McLoughlin VC. R, Thrower J. Tetrahedron 1969; 25: 5921

      For representative examples on the synthesis and reactivity of CuCF3 complexes, see:
    • 4a Wiemers DM, Burton DJ. J. Am. Chem. Soc. 1986; 108: 832
    • 4b Dubinina GG, Furutachi H, Vicic DA. J. Am. Chem. Soc. 2008; 130: 8600
    • 4c Dubinina GG, Ogikubo J, Vicic DA. Organometallics 2008; 27: 6233
    • 4d Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
    • 4e Tomashenko OA, Escudero-Adán EC, Martínez-Belmonte M, Grushin VV. Angew. Chem. Int. Ed. 2011; 50: 7655
    • 4f Zanardi A, Novikov MA, Martin E, Benet-Buchholz J, Grushin VV. J. Am. Chem. Soc. 2011; 133: 20901
    • 4g Litvinas ND, Fier PS, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 536
    • 4h Novák P, Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2012; 134: 16167
    • 4i Konovalov AI, Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2014; 136: 13410
    • 4j Lishchynskyi A, Berthon G, Grushin VV. Chem. Commun. 2014; 10237
    • 4k Mormino MG, Fier PS, Hartwig JF. Org. Lett. 2014; 16: 1744
    • 4l Nebra N, Grushin VV. J. Am. Chem. Soc. 2014; 136: 16998
    • 4m Morstein J, Hou H, Cheng C, Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 8054
  • 5 Martínez de Salinas S, Mudarra AL, Odena C, Martínez Belmonte M, Benet-Buchholz J, Maseras F, Pérez-Temprano MH. Chem. Eur. J. DOI: 10.1002/chem.201900496.
  • 6 Wiemers DM, Burton DJ. J. Am. Chem. Soc. 1986; 108: 832; and references cited therein
    • 7a Willert-Porada MA, Burton DJ, Baenziger NC. J. Chem. Soc., Chem. Commun. 1989; 1633
    • 7b Burton DJ, Wiemers DM. J. Fluorine Chem. 1985; 29: 359
  • 8 Agnes K, Movchun V, Rodima T, Dansauer T, Rusanov EB, Leito I, Kaljurand I, Koppel J, Pihl V, Koppel I, Ovsjannikov G, Toom L, Mishima M, Medebielle M, Lork E, Röschenthaler G.-V, Koppel IA, Kolomeitsev AA. J. Org. Chem. 2008; 73: 2607
    • 9a Matsui K, Tobita E, Ando M, Kondo K. Chem. Lett. 1981; 1719
    • 9b Carr GE, Chambers RD, Holmes TF, Parker DG. J. Chem. Soc., Perkin Trans. 1 1988; 921
  • 10 Chen Q, Wu S. J. Chem. Soc., Chem. Commun. 1989; 705
  • 11 Knauber T, Arikan F, Röschenthaler G.-V, Gooßen LJ. Chem. Eur. J. 2011; 17: 2689
    • 12a Shono T, Ishifune M, Okada T, Kashimura S. J. Org. Chem. 1991; 56: 2
    • 12b Russell J, Roques N. Tetrahedron 1998; 54: 13771
  • 13 Folléas B, Marek I, Normanta J-F, Saint-Jalmes L. Tetrahedron 2000; 56: 275
  • 14 Lishchynskyi A, Novikov MA, Martin E, Escudero-Adán EC, Novák P, Grushin VV. J. Org. Chem. 2013; 78: 11126
  • 15 Mudarra AL, Martínez de Salinas S, Pérez-Temprano MH. Org. Biomol. Chem. 2019; 17: 1655
    • 16a Barbosa HJ, Collins EA, Hamdouchi C, Hembre EJ, Hipskind PA, Johnston RD, Lu J, Rupp MJ, Takakuwa T, Thompson RC. U. S. Patent 7612067, 2009
    • 16b Lin RW, Davidson RI. Eur. Pat. Appl. EU 307519, 1989
    • 16c Lin RW, Davidson RI. U. S. Patent 4808748, 1989
    • 16d Davidson RI. U. S. Patent 4814480, 1989
    • 16e Langlois BR, Roques N. J. Fluorine Chem. 2007; 128: 1318
    • 17a Li Y, Chen T, Wang H, Zhang R, Jin K, Wang X, Duan C. Synlett 2011; 1713
    • 17b Schareina T, Wu X.-F, Zapf A, Cotté A, Gotta M, Beller M. Top. Catal. 2012; 55: 426
    • 17c Chen M, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 11628
    • 17d Lin X, Hou C, Li H, Weng Z. Chem. Eur. J. 2016; 22: 2075
  • 18 Zhao G, Wu H, Xiao Z, Chen Q.-Y, Liu C. RSC Adv. 2016; 6: 50250
    • 19a MacNeil JG. Jr, Burton DJ. J. Fluorine Chem. 1991; 55: 225
    • 19b Duan J.-X, Su D.-B, Wu J.-P, Chen Q.-Y. J. Fluorine Chem. 1994; 66: 167
  • 20 Prakash GK. S, Hu J, Olah GA. Org. Lett. 2003; 5: 3253
  • 21 Serizawa H, Aikawa K, Mikami K. Chem. Eur. J. 2013; 19: 17692
  • 22 Li X, Zhao J, Zhang L, Hu M, Wang L, Hu J. Org. Lett. 2015; 17: 298
    • 23a Burton DJ, Yang ZY. Tetrahedron 1992; 48: 189
    • 23b Morrison JA. Adv. Organomet. Chem. 1993; 35: 211
  • 24 Kondratenko NV, Vechirko EP, Yagupolskii LM. Synthesis 1980; 932
  • 25 Burton DJ, Wiemers DM. J. Am. Chem. Soc. 1985; 107: 5014
    • 26a Krause LJ, Morrison JA. J. Am. Chem. Soc. 1981; 103: 2995
    • 26b Krause LJ, Morrison JA. J. Chem. Soc., Chem. Commun. 1981; 1282
    • 26c Nair HK, Morrison JA. Inorg. Chem. 1989; 28: 2816
    • 26d Galiotos JK, Morrison JA. Organometallics 2000; 19: 2603
  • 27 Popov I, Lindeman S, Daugulis O. J. Am. Chem. Soc. 2011; 133: 9286
  • 28 Nakamura Y, Fujiu M, Murase T, Itoh Y, Serizawa H, Aikawa K, Mikami K. Beilstein J. Org. Chem. 2013; 9: 2404
  • 29 Aikawa K, Nakamura Y, Yokota Y, Toya W, Mikami K. Chem. Eur. J. 2015; 21: 96
  • 30 Urata H, Fuchikami T. Tetrahedron 1991; 32: 91
  • 31 Oishi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
    • 32a Mitsudera H, Li C.-J. Tetrahedron Lett. 2011; 52: 1898
    • 32b Xu J, Xiao B, Xie C.-Q, Luo D.-F, Liu L, Fu Y. Angew. Chem. Int. Ed. 2012; 124: 12719
    • 32c Gonda Z, Kovács S, Wéber C, Gáti T, Mészáros A, Kotschy A, Novák Z. Org. Lett. 2014; 16: 4268
  • 33 Hu M, Ni C, Hu J. J. Am. Chem. Soc. 2012; 134: 15257
  • 34 Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
    • 35a Chu L, Qing F.-L. J. Am. Chem. Soc. 2010; 132: 7262
    • 35b Chu L, Qing F.-L. Org. Lett. 2010; 12: 5060
  • 36 Jiang X, Chu L, Qing F.-L. J. Org. Chem. 2012; 77: 1251
  • 37 Jover J, Maseras F. Chem. Commun. 2013; 10486
  • 38 Weske S, Schoop R, Koszinowski K. Chem. Eur. J. 2016; 22: 11310
  • 39 Sanhueza IA, Nielsen MC, Ottiger M, Schoenebeck F. Helv. Chim. Acta 2012; 95: 2231
  • 40 Khan BA, Buba AE, Gooßen LJ. Chem. Eur. J. 2012; 18: 1577
  • 41 Geri JB, Wolfe MM. W, Szymczak NK. Angew. Chem. Int. Ed. 2018; 57: 1381
    • 42a Chan DM. T, Monaco KL, Wang R.-P, Winters MP. Tetrahedron 1998; 39: 2933
    • 42b Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron 1998; 39: 2941
  • 43 https://www.sigmaaldrich.com/catalog/product/aldrich/ 777692?lang=es&region=ES
  • 44 Usui Y, Noma J, Hirano M, Komiya S. Inorg. Chim. Acta 2000; 309: 151
  • 45 Kaplan PT, Loyd JA, Chin MT, Vicic DA. Beilstein J. Org. Chem. 2017; 13: 2297